Suppr超能文献

工程流动条件对化学细胞裂解操作中质粒DNA产量和纯度的影响。

Impact of engineering flow conditions on plasmid DNA yield and purity in chemical cell lysis operations.

作者信息

Meacle F J, Lander R, Ayazi Shamlou P, Titchener-Hooker N J

机构信息

Merck & Co., Inc., P.O. Box 2000, R8OY-3A42, Rahway, New Jersey 07065-0900, USA.

出版信息

Biotechnol Bioeng. 2004 Aug 5;87(3):293-302. doi: 10.1002/bit.20114.

Abstract

Chemical lysis of bacterial cells using an alkaline solution containing a detergent may provide an efficient scalable means for selectively removing covalently closed circular plasmid DNA from high-molecular-weight contaminating cellular components including chromosomal DNA. In this article we assess the chemical lysis of E. coli cells by SDS in a NaOH solution and determine the impact of pH environment and shear on the supercoiled plasmid and chromosomal DNA obtained. Experiments using a range of plasmids from 6 kb to 113 kb determined that in an unfavorable alkaline environment, where the NaOH concentration during lysis is greater than 0.15 +/- 0.03 M (pH 12.9 +/- 0.2), irreversible denaturation of the supercoiled plasmid DNA occurs. The extent of denaturation is shown to increase with time of exposure and NaOH concentration. Experiments using stirred vessels show that, depending on NaOH concentration, moderate to high mixing rates are necessary to maximize plasmid yield. While NaOH concentration does not significantly affect chromosomal DNA contamination, a high NaOH concentration is necessary to ensure complete conversion of chromosomal DNA to single-stranded form. In a mechanically agitated lysis reactor the correct mixing strategy must balance the need for sufficient mixing to eliminate potential regions of high NaOH concentrations and the need to avoid excessive breakage of the shear sensitive chromosomal DNA. The effect of shear on chromosomal DNA is examined over a wide range of shear rates (10(1)-10(5) s(-1)) demonstrating that, while increasing shear leads to fragmentation of chromosomal DNA to smaller sizes, it does not lead to significantly increased chromosomal DNA contamination except at very high shear rates (about 10(4)-10(5) s(-1)). The consequences of these effects on the choice of lysis reactor and scale-up are discussed.

摘要

使用含有去污剂的碱性溶液对细菌细胞进行化学裂解,可能为从包括染色体DNA在内的高分子量污染细胞成分中选择性去除共价闭合环状质粒DNA提供一种高效且可扩展的方法。在本文中,我们评估了SDS在NaOH溶液中对大肠杆菌细胞的化学裂解作用,并确定了pH环境和剪切力对获得的超螺旋质粒和染色体DNA的影响。使用一系列大小从6 kb到113 kb的质粒进行的实验表明,在不利的碱性环境中,即裂解过程中NaOH浓度大于0.15±0.03 M(pH 12.9±0.2)时,超螺旋质粒DNA会发生不可逆变性。变性程度随暴露时间和NaOH浓度的增加而增大。使用搅拌容器进行的实验表明,根据NaOH浓度的不同,需要适度到较高的混合速率才能使质粒产量最大化。虽然NaOH浓度对染色体DNA污染没有显著影响,但需要高浓度的NaOH以确保染色体DNA完全转化为单链形式。在机械搅拌的裂解反应器中,正确的混合策略必须平衡充分混合以消除高NaOH浓度潜在区域的需求与避免对剪切敏感的染色体DNA过度断裂的需求。在很宽的剪切速率范围(10¹ - 10⁵ s⁻¹)内研究了剪切力对染色体DNA的影响,结果表明,虽然增加剪切力会导致染色体DNA断裂成更小的片段,但除了在非常高的剪切速率(约10⁴ - 10⁵ s⁻¹)下,不会导致染色体DNA污染显著增加。讨论了这些影响对裂解反应器选择和放大的后果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验