Neuhäuser Markus, Senske Roswitha
Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Hufelandstr. 55, D-45122 Essen, Germany.
Bioinformatics. 2004 Dec 12;20(18):3553-64. doi: 10.1093/bioinformatics/bth442. Epub 2004 Jul 29.
An important application of microarray experiments is to identify differentially expressed genes. Because microarray data are often not distributed according to a normal distribution nonparametric methods were suggested for their statistical analysis. Here, the Baumgartner-Weiss-Schindler test, a novel and powerful test based on ranks, is investigated and compared with the parametric t-test as well as with two other nonparametric tests (Wilcoxon rank sum test, Fisher-Pitman permutation test) recently recommended for the analysis of gene expression data.
Simulation studies show that an exact permutation test based on the Baumgartner-Weiss-Schindler statistic B is preferable to the other three tests. It is less conservative than the Wilcoxon test and more powerful, in particular in case of asymmetric or heavily tailed distributions. When the underlying distribution is symmetric the differences in power between the tests are relatively small. Thus, the Baumgartner-Weiss-Schindler is recommended for the usual situation that the underlying distribution is a priori unknown.
SAS code available on request from the authors.
微阵列实验的一个重要应用是识别差异表达基因。由于微阵列数据往往不服从正态分布,因此有人建议采用非参数方法进行统计分析。在此,我们研究了基于秩的新型强大检验——鲍姆加特纳 - 魏斯 - 辛德勒检验,并将其与参数t检验以及最近推荐用于基因表达数据分析的其他两种非参数检验(威尔科克森秩和检验、费舍尔 - 皮特曼置换检验)进行比较。
模拟研究表明,基于鲍姆加特纳 - 魏斯 - 辛德勒统计量B的精确置换检验优于其他三种检验。它比威尔科克森检验保守性更低且功效更强,特别是在分布不对称或有重尾的情况下。当基础分布对称时,各检验之间的功效差异相对较小。因此,对于基础分布先验未知的常见情况,推荐使用鲍姆加特纳 - 魏斯 - 辛德勒检验。
可根据作者要求获取SAS代码。