Iakovlev A G, Taisova A S, Fetisova Z G
Mol Biol (Mosk). 2004 May-Jun;38(3):524-31.
The present series of papers is part of an integrated research program to understand the effective functional strategy of native light-harvesting molecular antennae in photosynthetic organisms. This work tackles the problem of the structural optimization of light-harvesting antennae of variable size. In vivo, the size responds to the illumination intensity, thus implying more sophisticated optimization strategies, since larger antenna size demands finer structural tuning. Earlier modeling experiments showed that the aggregation of the antenna pigments, apart from being itself a universal structural factor of functional antenna optimization with any (!) spatial lattice of light-harvesting molecules, determines the antenna performance provided that the degree of aggregation varies: the larger the unit building block, the higher the efficacy of the whole structure. It means that altering the degree of pigment aggregation in response to the antenna size is biologically expedient. In the case of the oligomeric chlorosomal antenna of green bacteria, the strategy of variable antenna structural optimization in response to the illumination intensity was demonstrated to take place in vivo and facilitate high antenna performance regardless of its size, thus allowing bacteria to survive in diverse illumination conditions.
本系列论文是一项综合研究计划的一部分,该计划旨在了解光合生物中天然光捕获分子天线的有效功能策略。这项工作解决了不同大小的光捕获天线的结构优化问题。在体内,天线大小会根据光照强度做出响应,这意味着需要更复杂的优化策略,因为更大的天线尺寸需要更精细的结构调整。早期的建模实验表明,天线色素的聚集,除了本身是功能天线优化的一个通用结构因素,适用于任何(!)光捕获分子的空间晶格外,还决定了天线性能,前提是聚集程度有所不同:单元构建块越大,整个结构的效率越高。这意味着根据天线大小改变色素聚集程度在生物学上是有利的。在绿色细菌的寡聚叶绿体天线的情况下,已证明响应光照强度进行可变天线结构优化的策略在体内发生,并有助于实现无论天线大小如何都具有高天线性能,从而使细菌能够在不同光照条件下生存。