Suppr超能文献

预测性逻辑回归模型的验证与更新:样本量与收缩的研究

Validation and updating of predictive logistic regression models: a study on sample size and shrinkage.

作者信息

Steyerberg Ewout W, Borsboom Gerard J J M, van Houwelingen Hans C, Eijkemans Marinus J C, Habbema J Dik F

机构信息

Center for Clinical Decision Sciences, Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands.

出版信息

Stat Med. 2004 Aug 30;23(16):2567-86. doi: 10.1002/sim.1844.

Abstract

A logistic regression model may be used to provide predictions of outcome for individual patients at another centre than where the model was developed. When empirical data are available from this centre, the validity of predictions can be assessed by comparing observed outcomes and predicted probabilities. Subsequently, the model may be updated to improve predictions for future patients. As an example, we analysed 30-day mortality after acute myocardial infarction in a large data set (GUSTO-I, n = 40 830). We validated and updated a previously published model from another study (TIMI-II, n = 3339) in validation samples ranging from small (200 patients, 14 deaths) to large (10,000 patients, 700 deaths). Updated models were tested on independent patients. Updating methods included re-calibration (re-estimation of the intercept or slope of the linear predictor) and more structural model revisions (re-estimation of some or all regression coefficients, model extension with more predictors). We applied heuristic shrinkage approaches in the model revision methods, such that regression coefficients were shrunken towards their re-calibrated values. Parsimonious updating methods were found preferable to more extensive model revisions, which should only be attempted with relatively large validation samples in combination with shrinkage.

摘要

逻辑回归模型可用于为模型开发中心以外的其他中心的个体患者提供预后预测。当该中心有实证数据时,可通过比较观察到的结果和预测概率来评估预测的有效性。随后,该模型可进行更新,以改善对未来患者的预测。例如,我们在一个大数据集(GUSTO - I,n = 40830)中分析了急性心肌梗死后30天的死亡率。我们在从小规模(200例患者,14例死亡)到大规模(10000例患者,700例死亡)的验证样本中,对另一项研究(TIMI - II,n = 3339)中先前发表的模型进行了验证和更新。在独立患者身上测试更新后的模型。更新方法包括重新校准(重新估计线性预测器的截距或斜率)以及更具结构性的模型修订(重新估计部分或所有回归系数,增加更多预测变量进行模型扩展)。我们在模型修订方法中应用了启发式收缩方法,使回归系数向其重新校准的值收缩。结果发现,简约的更新方法比更广泛的模型修订更可取,后者仅应在相对较大的验证样本结合收缩方法时尝试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验