Saito Keigo, Oda Masayuki, Sarai Akinori, Azuma Takachika, Kozono Haruo
Research Institute for Biological Sciences, Tokyo University of Science, 2669, Yamazaki, Noda, Chiba 278-0022, Japan.
Biochemistry. 2004 Aug 10;43(31):10186-91. doi: 10.1021/bi049838f.
We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek-peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II-peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II-peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II-peptide-T cell receptor ternary complex.
我们使用差示扫描量热法研究了小鼠主要组织相容性复合体II类分子I-E(k)容纳血红蛋白(Hb)肽突变体的热变性情况,这些突变体在I-Ek口袋中埋入的化学保守氨基酸(位置71和73)以及暴露于溶剂中的氨基酸(位置72)处有单个氨基酸替换。与I-Ek-Hb(野生型)分子一样,所有I-Ek-Hb(突变型)分子在pH 5.5时比在pH 7.4时表现出更高的热稳定性,这可以解释MHC II的肽交换功能。热稳定性强烈依赖于结合的肽序列;I-Ek-Hb(突变型)分子比I-Ek-Hb(野生型)分子稳定性更低,这与每种肽对I-Ek的相对亲和力高度相关。这支持了结合肽是完全折叠的MHC II分子一部分的观点。I-Ek-Hb(突变型)折叠的热力学参数可以解释稳定性差异的热力学起源,与晶体结构分析以及这些残基对I-Ek-肽复合物整体构象的有限贡献相关。我们发现变性温度与量热焓变之间存在线性关系。因此,尽管MHC II-肽复合物可能具有多样的热稳定性谱,这取决于结合肽的氨基酸序列,但构象扰动是有限的。MHC II-肽复合物稳定性的变化将通过影响MHC II-肽-T细胞受体三元复合物的稳定性在T细胞受体的抗原识别中发挥作用。