Shaikh Saher Afshan, Ahmed Sajeedha Reshmi, Jayaram B
Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
Arch Biochem Biophys. 2004 Sep 1;429(1):81-99. doi: 10.1016/j.abb.2004.05.019.
Developing a molecular view of the thermodynamics of DNA recognition is essential to the design of ligands for regulating gene expression. In a first comprehensive attempt at sketching an atlas of DNA-drug energetics, we present here a detailed thermodynamic view of minor-groove recognition by small molecules via a computational study on 25 DNA-drug complexes. The studies are configured in the MMGBSA (Molecular Mechanics-Generalized Born-Solvent Accessibility) framework at the current state of the art and facilitate a structure-energy component correlation. Analyses were conducted on both energy minimized structures of DNA-drug complexes and molecular dynamics trajectories developed for the purpose of this study. While highlighting the favorable role of packing, shape complementarity, and van der Waals and hydrophobic interactions of the drugs in the minor groove in conformity with experiment, the studies reveal an interesting annihilation of favorable electrostatics by desolvation. Structural modifications attempted on the ligands point to the requisite physico-chemical factors for obtaining improved binding energies. Hydrogen bonds predicted to be important for specificity based on structural considerations do not always turn out to be significant to binding in post facto analyses of molecular dynamics trajectories, which treat thermal averaging, solvent, and counterion effects rigorously. The strength of the hydrogen bonds retained between the DNA and drug during the molecular dynamics simulations is approximately 1kcal/mol. Overall, the study reveals the compensatory nature of the diverse binding free energy components, possible threshold limits for some of these properties, and the availability of a computationally viable free energy methodology which could be of value in drug-design endeavors.
构建DNA识别热力学的分子观点对于设计用于调节基因表达的配体至关重要。在首次全面绘制DNA-药物能量图谱的尝试中,我们通过对25种DNA-药物复合物的计算研究,在此呈现小分子对小沟识别的详细热力学观点。这些研究是在当前最先进的MMGBSA(分子力学-广义玻恩溶剂可及性)框架下进行的,有助于建立结构-能量成分的相关性。对DNA-药物复合物的能量最小化结构和为本研究目的而开发的分子动力学轨迹都进行了分析。这些研究突出了药物在小沟中的堆积、形状互补以及范德华力和疏水相互作用的有利作用,与实验结果一致,同时也揭示了去溶剂化对有利静电作用的有趣抵消。对配体进行的结构修饰指出了获得更高结合能所需的物理化学因素。基于结构考虑预测对特异性很重要的氢键,在对分子动力学轨迹进行事后分析时,并不总是对结合有显著影响,分子动力学轨迹分析严格考虑了热平均、溶剂和抗衡离子效应。在分子动力学模拟过程中,DNA与药物之间保留的氢键强度约为1千卡/摩尔。总体而言,该研究揭示了多种结合自由能成分的补偿性质、其中一些性质可能的阈值限制,以及一种在药物设计中可能有价值的计算可行的自由能方法的可用性。