Streek Martin, Schmid Friederike, Duong Thanh Tu, Ros Alexandra
Fakultat für Physik, Universität Bielefeld, 33615 Bielefeld, Germany.
J Biotechnol. 2004 Aug 26;112(1-2):79-89. doi: 10.1016/j.jbiotec.2004.04.021.
Using Brownian dynamics simulations, we study the migration of long charged chains in an electrophoretic microchannel device consisting of an array of microscopic entropic traps with alternating deep regions and narrow constrictions. Such a device has been designed and fabricated recently by Han and Craighead [Science 288 (2000) 1026] for the separation of DNA molecules. Our simulation reproduces the experimental observation that the mobility increases with the length of the DNA. A detailed data analysis allows to identify the reasons for this behavior. Two distinct mechanisms contribute to slowing down shorter chains. One has been described earlier by Han and Craighead [Science 288 (2000) 1026]: the chains are delayed at the entrance of the constriction and escape with a rate that increases with chain length. The other, actually dominating mechanism is here reported for the first time: some chains diffuse out of their main path into the corners of the box, where they remain trapped for a long time. The probability that this happens increases with the diffusion constant, i.e., the inverse chain length.
利用布朗动力学模拟,我们研究了长带电链在一种电泳微通道装置中的迁移情况,该装置由一系列具有交替深区和窄缩窄区的微观熵阱组成。这种装置最近由Han和Craighead [《科学》288 (2000) 1026] 设计并制造出来用于分离DNA分子。我们的模拟重现了实验观察结果,即迁移率随DNA长度增加。详细的数据分析有助于确定这种行为的原因。有两种不同的机制导致较短链的迁移速度减慢。一种机制Han和Craighead [《科学》288 (2000) 1026] 之前已经描述过:链在缩窄区入口处延迟,并以随链长度增加的速率逃逸。另一种实际上起主导作用的机制是首次在此报道:一些链扩散出其主要路径进入盒角,在那里它们会被困很长时间。这种情况发生的概率随扩散常数增加,即随链长的倒数增加。