Suppr超能文献

鸵鸟的步态选择:有无腾空阶段时行走和奔跑的力学与代谢特征

Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.

作者信息

Rubenson Jonas, Heliams Denham B, Lloyd David G, Fournier Paul A

机构信息

School of Human Movement and Exercise Science, University of Western Australia, Crawley, WA 6009, Australia.

出版信息

Proc Biol Sci. 2004 May 22;271(1543):1091-9. doi: 10.1098/rspb.2004.2702.

Abstract

It has been argued that minimization of metabolic-energy costs is a primary determinant of gait selection in terrestrial animals. This view is based predominantly on data from humans and horses, which have been shown to choose the most economical gait (walking, running, galloping) for any given speed. It is not certain whether a minimization of metabolic costs is associated with the selection of other prevalent forms of terrestrial gaits, such as grounded running (a widespread gait in birds). Using biomechanical and metabolic measurements of four ostriches moving on a treadmill over a range of speeds from 0.8 to 6.7 m s(-1), we reveal here that the selection of walking or grounded running at intermediate speeds also favours a reduction in the metabolic cost of locomotion. This gait transition is characterized by a shift in locomotor kinetics from an inverted-pendulum gait to a bouncing gait that lacks an aerial phase. By contrast, when the ostrich adopts an aerial-running gait at faster speeds, there are no abrupt transitions in mechanical parameters or in the metabolic cost of locomotion. These data suggest a continuum between grounded and aerial running, indicating that they belong to the same locomotor paradigm.

摘要

有人认为,代谢能量消耗的最小化是陆生动物步态选择的主要决定因素。这一观点主要基于来自人类和马的数据,研究表明,在任何给定速度下,人类和马都会选择最经济的步态(行走、奔跑、疾驰)。代谢成本的最小化是否与其他常见的陆生步态选择有关尚不确定,比如触地奔跑(鸟类中一种广泛存在的步态)。通过对四只鸵鸟在跑步机上以0.8至6.7米每秒(-1)的速度运动进行生物力学和代谢测量,我们在此揭示,在中等速度下选择行走或触地奔跑也有利于降低运动的代谢成本。这种步态转变的特征是运动动力学从倒立摆步态转变为缺乏腾空阶段的弹跳步态。相比之下,当鸵鸟在较快速度下采用腾空奔跑步态时,机械参数或运动代谢成本没有突然变化。这些数据表明触地奔跑和腾空奔跑之间存在连续性,表明它们属于同一运动模式。

相似文献

3
Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
J Exp Biol. 2016 Oct 15;219(Pt 20):3301-3308. doi: 10.1242/jeb.142588.
4
Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
J Exp Zool A Comp Exp Biol. 2006 Nov 1;305(11):899-911. doi: 10.1002/jez.a.334.
5
Gait-specific energetics contributes to economical walking and running in emus and ostriches.
Proc Biol Sci. 2011 Jul 7;278(1714):2040-6. doi: 10.1098/rspb.2010.2022. Epub 2010 Dec 1.
7
Kinematics and center of mass mechanics during terrestrial locomotion in northern lapwings (Vanellus vanellus, Charadriiformes).
J Exp Zool A Ecol Genet Physiol. 2012 Nov;317(9):580-94. doi: 10.1002/jez.1750. Epub 2012 Aug 27.
8
Computer optimization of a minimal biped model discovers walking and running.
Nature. 2006 Jan 5;439(7072):72-5. doi: 10.1038/nature04113. Epub 2005 Sep 11.
9
Walking and running in the red-legged running frog, Kassina maculata.
J Exp Biol. 2004 Jan;207(Pt 3):399-410. doi: 10.1242/jeb.00761.
10
Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
J Physiol Anthropol. 2018 Jun 19;37(1):18. doi: 10.1186/s40101-018-0177-7.

引用本文的文献

1
Study on the characteristics of head and neck movements of geese walking in a straight line at different speeds.
Front Vet Sci. 2025 May 30;12:1554240. doi: 10.3389/fvets.2025.1554240. eCollection 2025.
2
Muscle-controlled physics simulations of bird locomotion resolve the grounded running paradox.
Sci Adv. 2024 Sep 27;10(39):eado0936. doi: 10.1126/sciadv.ado0936. Epub 2024 Sep 25.
4
Ground Reaction Forces and Energy Exchange During Underwater Walking.
Integr Org Biol. 2024 May 2;6(1):obae013. doi: 10.1093/iob/obae013. eCollection 2024.
5
7
Effects of the speed on the webbed foot kinematics of mallard ().
PeerJ. 2023 May 15;11:e15362. doi: 10.7717/peerj.15362. eCollection 2023.
8
Tail feather strength in tail-assisted climbing birds is achieved through geometric, not material change.
Proc Biol Sci. 2023 May 10;290(1998):20222325. doi: 10.1098/rspb.2022.2325.
9
Joint-level coordination patterns for split-belt walking across different speed ratios.
J Neurophysiol. 2023 May 1;129(5):969-983. doi: 10.1152/jn.00323.2021. Epub 2023 Mar 29.

本文引用的文献

1
MECHANICAL WORK IN RUNNING.
J Appl Physiol. 1964 Mar;19:249-56. doi: 10.1152/jappl.1964.19.2.249.
2
A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans.
J Appl Physiol (1985). 2003 Aug;95(2):838-43. doi: 10.1152/japplphysiol.00128.2003. Epub 2003 Apr 11.
3
Biomechanics: Are fast-moving elephants really running?
Nature. 2003 Apr 3;422(6931):493-4. doi: 10.1038/422493a.
4
The energetics of the trot-gallop transition.
J Exp Biol. 2003 May;206(Pt 9):1557-64. doi: 10.1242/jeb.00276.
6
Are transitions in human gait determined by mechanical, kinetic or energetic factors?
Hum Mov Sci. 2002 Dec;21(5-6):785-805. doi: 10.1016/s0167-9457(02)00180-x.
7
Energetics and mechanics of human running on surfaces of different stiffnesses.
J Appl Physiol (1985). 2002 Feb;92(2):469-78. doi: 10.1152/japplphysiol.01164.2000.
8
Simultaneous positive and negative external mechanical work in human walking.
J Biomech. 2002 Jan;35(1):117-24. doi: 10.1016/s0021-9290(01)00169-5.
9
Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.
J Exp Biol. 2001 Jul;204(Pt 13):2277-87. doi: 10.1242/jeb.204.13.2277.
10
Terrestrial locomotion in the black-billed magpie. I. Spatio-temporal gait characteristics.
Motor Control. 2000 Apr;4(2):150-64. doi: 10.1123/mcj.4.2.150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验