Hessner Martin J, Meyer Lisa, Tackes Jennifer, Muheisen Sanaa, Wang Xujing
The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.
BMC Genomics. 2004 Aug 4;5(1):53. doi: 10.1186/1471-2164-5-53.
Global gene expression studies with microarrays can offer biological insights never before possible. However, the technology possesses many sources of technical variability that are an obstacle to obtaining high quality data sets. Since spotted microarrays offer design/content flexibility and potential cost savings over commercial systems, we have developed prehybridization quality control strategies for spotted cDNA and oligonucleotide arrays. These approaches utilize a third fluorescent dye (fluorescein) to monitor key fabrication variables, such as print/spot morphology, DNA retention, and background arising from probe redistributed during blocking. Here, our labeled cDNA array platform is used to study, 1) compression of array data using known input ratios of Arabidopsis in vitro transcripts and arrayed serial dilutions of homologous probes; 2) how curing time of in-house poly-L-lysine coated slides impacts probe retention capacity; and 3) the retention characteristics of 13 commercially available surfaces.
When array element fluorescein intensity drops below 5,000 RFU/pixel, gene expression measurements become increasingly compressed, thereby validating this value as a prehybridization quality control threshold. We observe that the DNA retention capacity of in-house poly-L-lysine slides decreases rapidly over time (~50% reduction between 3 and 12 weeks post-coating; p < 0.0002) and that there are considerable differences in retention characteristics among commercially available poly-L-lysine and amino silane-coated slides.
High DNA retention rates are necessary for accurate gene expression measurements. Therefore, an understanding of the characteristics and optimization of protocols to an array surface are prerequisites to fabrication of high quality arrays.
利用微阵列进行的全基因组表达研究能够提供前所未有的生物学见解。然而,该技术存在许多技术变异性来源,这对获取高质量数据集构成了障碍。由于点阵式微阵列在设计/内容灵活性以及潜在成本节约方面优于商业系统,我们针对点阵式cDNA和寡核苷酸阵列开发了预杂交质量控制策略。这些方法利用第三种荧光染料(荧光素)来监测关键的制备变量,如打印/斑点形态、DNA保留情况以及在封闭过程中因探针重新分布而产生的背景。在此,我们使用标记的cDNA阵列平台来研究:1)利用拟南芥体外转录本的已知输入比例和同源探针的阵列系列稀释来压缩阵列数据;2)自制聚-L-赖氨酸包被载玻片的固化时间如何影响探针保留能力;3)13种市售表面的保留特性。
当阵列元件的荧光素强度降至5000 RFU/像素以下时,基因表达测量结果变得越来越压缩,从而验证了该值作为预杂交质量控制阈值。我们观察到自制聚-L-赖氨酸载玻片的DNA保留能力随时间迅速下降(涂层后3至12周之间下降约50%;p < 0.0002),并且市售聚-L-赖氨酸和氨基硅烷包被载玻片在保留特性方面存在相当大的差异。
高DNA保留率对于准确的基因表达测量是必要的。因此,了解阵列表面的特性并优化制备方案是制造高质量阵列的先决条件。