Suppr超能文献

ζ链对基于CD3γ双亮氨酸基序的掩盖是有效表达T细胞受体所必需的。

Masking of the CD3 gamma di-leucine-based motif by zeta is required for efficient T-cell receptor expression.

作者信息

Lauritsen Jens Peter H, Bonefeld Charlotte Menné, von Essen Marina, Nielsen Martin Weiss, Rasmussen Anette Bødker, Ødum Niels, Dietrich Jes, Geisler Carsten

机构信息

Institute of Medical Microbiology and Immunology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.

出版信息

Traffic. 2004 Sep;5(9):672-84. doi: 10.1111/j.1600-0854.2004.00211.x.

Abstract

The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.

摘要

T细胞受体(TCR)是一种多聚体受体,由Tiαβ异二聚体以及非共价结合的CD3γδε和ζ(2)链组成。TCR的所有链对于TCR在细胞表面的高效表达都是必需的。先前对含有TCR亚基CD3γ基于双亮氨酸的内吞基序的嵌合分子的研究表明,ζ链可以掩盖该基序。在本研究中,我们发现ζ细胞质尾巴的连续截短导致完全组装的TCR复合物的表面表达水平降低。TCR表达水平降低是由于TCR内吞速率常数增加,同时外排速率常数未受影响。此外,ζ截短的细胞中TCR降解速率常数增加。引入具有破坏的基于双亮氨酸的内吞基序的CD3γ链可部分恢复ζ截短细胞中的TCR表达,表明ζ链掩盖了CD3γ中的内吞基序,从而稳定了TCR在细胞表面的表达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验