Cassano Adam G, Anderson Vernon E, Harris Michael E
Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
Biochemistry. 2004 Aug 17;43(32):10547-59. doi: 10.1021/bi049188f.
Heavy atom isotope effects are a valuable tool for probing chemical and enzymatic reaction mechanisms; yet, they are not widely applied to examine mechanisms of nucleophilic activation. We developed approaches for analyzing solvent (18)O nucleophile isotope effects ((18)k(nuc)) that allow, for the first time, their application to hydrolysis reactions of nucleotides and nucleic acids. Here, we report (18)k(nuc) for phosphodiester hydrolysis catalyzed by Mg(2+) and by the Mg(2+)-dependent RNase P ribozyme and deamination by the Zn(2+)-dependent protein enzyme adenosine deaminase (ADA). Because ADA incorporates a single solvent molecule into the product inosine, this reaction can be used to monitor solvent (18)O/(16)O ratios in complex reaction mixtures. This approach, combined with new methods for analysis of isotope ratios of nucleotide phosphates by whole molecule mass spectrometry, permitted determination of (18)k(nuc) for hydrolysis of thymidine 5'-p-nitrophenyl phosphate and RNA cleavage by the RNase P ribozyme. For ADA, an inverse (18)k(nuc) of 0.986 +/- 0.001 is observed, reflecting coordination of the nucleophile by an active site Zn(2+) ion and a stepwise mechanism. In contrast, the observed (18)k(nuc) for phosphodiester reactions were normal: 1.027 +/- 0.013 and 1.030 +/- 0.012 for the Mg(2+)- and ribozyme-catalyzed reactions, respectively. Such normal effects indicate that nucleophilic attack occurs in the rate-limiting step for these reactions, consistent with concerted mechanisms. However, these magnitudes are significantly less than the (18)k(nuc) observed for nucleophilic attack by hydroxide (1.068 +/- 0.007), indicating a "stiffer" bonding environment for the nucleophile in the transition state. Kinetic analysis of the Mg(2+)-catalyzed reaction indicates that a Mg(2+)-hydroxide complex is the catalytic species; thus, the lower (18)k(nuc), in large part, reflects direct metal ion coordination of the nucleophilic oxygen. A similar value for the RNase P ribozyme catalyzed reaction provides support for nucleophilic activation by metal ion catalysis.
重原子同位素效应是探究化学和酶促反应机制的宝贵工具;然而,它们尚未广泛应用于研究亲核激活机制。我们开发了分析溶剂(18)O亲核同位素效应((18)k(nuc))的方法,首次使其能够应用于核苷酸和核酸的水解反应。在此,我们报告了由Mg(2+)、依赖Mg(2+)的RNase P核酶催化的磷酸二酯水解以及由依赖Zn(2+)的蛋白质酶腺苷脱氨酶(ADA)催化的脱氨反应的(18)k(nuc)。由于ADA将单个溶剂分子掺入产物肌苷中,该反应可用于监测复杂反应混合物中的溶剂(18)O/(16)O比率。这种方法与通过全分子质谱分析核苷酸磷酸酯同位素比率的新方法相结合,使得能够测定胸苷5'-对硝基苯磷酸酯水解以及RNase P核酶切割RNA的(18)k(nuc)。对于ADA,观察到的反向(18)k(nuc)为0.986±0.001,反映了亲核试剂与活性位点Zn(2+)离子的配位以及逐步机制。相比之下,观察到的磷酸二酯反应的(18)k(nuc)是正常的:Mg(2+)催化的反应为1.027±0.013,核酶催化的反应为1.030±0.012。这种正常效应表明亲核攻击发生在这些反应的限速步骤中,这与协同机制一致。然而,这些数值明显小于氢氧根亲核攻击所观察到的(18)k(nuc)(1.068±0.007),表明过渡态中亲核试剂的键合环境“更硬”。对Mg(2+)催化反应的动力学分析表明,Mg(2+)-氢氧化物络合物是催化物种;因此,较低的(18)k(nuc)在很大程度上反映了亲核氧与金属离子的直接配位。RNase P核酶催化反应的类似值为金属离子催化的亲核激活提供了支持。