Zhang Qing, Broyde Suse, Schlick Tamar
Department of Chemistry and Courant Institute of Mathematical Sciences, New York University and the Howard Hughes Medical Institute, 251 Mercer Street, New York, NY 10012, USA.
Philos Trans A Math Phys Eng Sci. 2004 Jul 15;362(1820):1479-96. doi: 10.1098/rsta.2004.1386.
The TATA-box binding protein (TBP) is required by eukaryotic RNA polymerases for correct transcription initiation. TBP binds to the minor groove of an 8 base pair (bp) DNA-promoter element known as the TATA box and severely bends the TATA box. The promoter-DNA substrate can be damaged by components present in the cell or the environment to produce covalent carcinogen-DNA adducts. These may lead to transcription blockage or unfaithful transcription. Benzo[a]pyrene (BP) is a widespread environmental chemical carcinogen which can be metabolically converted to DNA-reactive enantiomeric (+) and (-)-anti-benzo[a]pyrene diol epoxides (BPDEs). Recent experimental studies of a pair of stereoisomeric adenine adducts, derived from (+) and (-)-anti-BPDEs, have revealed how these lesions influence the complexation of TBP with the TATA box. Depending on the adduct's location in the TATA box and its stereochemistry, the stability of monomeric TATA-TBP complexes was found to increase or decrease relative to the unmodified DNA. We report here analyses of molecular-dynamics simulations to interpret these findings. Structural analyses of 12 DNA-protein systems representing different combinations of adduct stereoisomer type and placement within the promoter reveal that the location of the adduct within the TATA octamer determines whether the stability of TATA-TBP complexes is increased or decreased. The effect on binding stability can be interpreted in terms of conformational freedom and major-groove space available to BP due to the hydrogen bonds and inserted phenylalanines of the TATA-TBP complex; that is, depending on the position of the adenine to which BP is covalently bound, BP can be accommodated in an intercalated or major-groove orientation with ease or with difficulty (due to interference with TATA-TBP interactions). The unravelled structures and interactions thus reveal the effect of different adduct locations on TATA-TBP complex formation and suggest how transcription initiation may be affected by the presence of a bulky BP.
真核生物RNA聚合酶进行正确的转录起始需要TATA框结合蛋白(TBP)。TBP与一个被称为TATA框的8碱基对(bp)DNA启动子元件的小沟结合,并使TATA框严重弯曲。启动子-DNA底物可能会被细胞内或环境中的成分破坏,从而产生共价致癌物-DNA加合物。这些加合物可能导致转录阻断或转录错误。苯并[a]芘(BP)是一种广泛存在的环境化学致癌物,它可以通过代谢转化为具有DNA反应活性的对映体(+)和(-)-反式苯并[a]芘二醇环氧化物(BPDEs)。最近对一对由(+)和(-)-反式-BPDEs衍生而来的立体异构腺嘌呤加合物的实验研究揭示了这些损伤如何影响TBP与TATA框的复合。根据加合物在TATA框中的位置及其立体化学结构,发现单体TATA-TBP复合物的稳定性相对于未修饰的DNA会增加或降低。我们在此报告分子动力学模拟分析以解释这些发现。对代表加合物立体异构体类型和在启动子内位置的不同组合的12个DNA-蛋白质系统进行结构分析表明,加合物在TATA八聚体内的位置决定了TATA-TBP复合物的稳定性是增加还是降低。对结合稳定性的影响可以根据TATA-TBP复合物的氢键和插入的苯丙氨酸导致的BP的构象自由度和大沟空间来解释;也就是说,取决于BP与之共价结合的腺嘌呤的位置,BP可以轻松或困难地以插入或大沟方向容纳(由于对TATA-TBP相互作用的干扰)。由此揭示的结构和相互作用显示了不同加合物位置对TATA-TBP复合物形成的影响,并表明大体积BP的存在可能如何影响转录起始。