Schubert Mario, Edge Robert E, Lario Paula, Cook Michael A, Strynadka Natalie C J, Mackie George A, McIntosh Lawrence P
Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
J Mol Biol. 2004 Jul 30;341(1):37-54. doi: 10.1016/j.jmb.2004.05.061.
S1 domains occur in four of the major enzymes of mRNA decay in Escherichia coli: RNase E, PNPase, RNase II, and RNase G. Here, we report the structure of the S1 domain of RNase E, determined by both X-ray crystallography and NMR spectroscopy. The RNase E S1 domain adopts an OB-fold, very similar to that found with PNPase and the major cold shock proteins, in which flexible loops are appended to a well-ordered five-stranded beta-barrel core. Within the crystal lattice, the protein forms a dimer stabilized primarily by intermolecular hydrophobic packing. Consistent with this observation, light-scattering, chemical crosslinking, and NMR spectroscopic measurements confirm that the isolated RNase E S1 domain undergoes a specific monomer-dimer equilibrium in solution with a K(D) value in the millimolar range. The substitution of glycine 66 with serine dramatically destabilizes the folded structure of this domain, thereby providing an explanation for the temperature-sensitive phenotype associated with this mutation in full-length RNase E. Based on amide chemical shift perturbation mapping, the binding surface for a single-stranded DNA dodecamer (K(D)=160(+/-40)microM) was identified as a groove of positive electrostatic potential containing several exposed aromatic side-chains. This surface, which corresponds to the conserved ligand-binding cleft found in numerous OB-fold proteins, lies distal to the dimerization interface, such that two independent oligonucleotide-binding sites can exist in the dimeric form of the RNase E S1 domain. Based on these data, we propose that the S1 domain serves a dual role of dimerization to aid in the formation of the tetrameric quaternary structure of RNase E as described by Callaghan et al. in 2003 and of substrate binding to facilitate RNA hydrolysis by the adjacent catalytic domains within this multimeric enzyme.
S1结构域存在于大肠杆菌中mRNA降解的四种主要酶中:核糖核酸酶E、多聚核苷酸磷酸化酶(PNPase)、核糖核酸酶II和核糖核酸酶G。在此,我们报告了通过X射线晶体学和核磁共振光谱法确定的核糖核酸酶E的S1结构域的结构。核糖核酸酶E的S1结构域采用OB折叠,与在多聚核苷酸磷酸化酶和主要冷休克蛋白中发现的结构非常相似,其中柔性环连接到排列有序的五链β桶核心上。在晶格中,该蛋白质形成二聚体,主要通过分子间疏水堆积稳定。与此观察结果一致,光散射、化学交联和核磁共振光谱测量证实,分离的核糖核酸酶E的S1结构域在溶液中经历特定的单体-二聚体平衡,解离常数(K(D))值在毫摩尔范围内。将甘氨酸66替换为丝氨酸会极大地破坏该结构域的折叠结构,从而为与全长核糖核酸酶E中该突变相关的温度敏感表型提供了解释。基于酰胺化学位移扰动图谱,确定了单链DNA十二聚体(K(D)=160(±40)μM)的结合表面为包含几个暴露芳香侧链的正静电势凹槽。该表面对应于在许多OB折叠蛋白中发现的保守配体结合裂隙,位于二聚化界面的远端,使得核糖核酸酶E的S1结构域的二聚体形式中可以存在两个独立的寡核苷酸结合位点。基于这些数据,我们提出S1结构域具有双重作用,一是如卡拉汉等人在2003年所述的二聚化以帮助形成核糖核酸酶E的四聚体四级结构,二是底物结合以促进该多聚体酶中相邻催化结构域的RNA水解。