Suppr超能文献

使用微阵列预测癌症患者对化疗的耐药性。

Using microarrays to predict resistance to chemotherapy in cancer patients.

作者信息

Lee Chung-Hae, Macgregor Pascale F

机构信息

Microarray Centre, Clinical Genomics Centre, University Health Network, Canadian Breast Cancer Research Alliance, 790 Bay Street, Ste. 1000, Toronto, ON, M5G 1NB, Canada.

出版信息

Pharmacogenomics. 2004 Sep;5(6):611-25. doi: 10.1517/14622416.5.6.611.

Abstract

Chemotherapy resistance remains a major obstacle to successful treatment and better outcome in cancer patients. The advent of whole genome experimental strategies, such as DNA microarrays, has transformed the way researchers approach cancer research. There is considerable hope that microarray technology will lead to the identification of new targets for therapeutic intervention, a better understanding of the disease process, and, ultimately, to higher survival rates and more personalized medicine. The question at hand is what is the best approach to apply these new technologies to the study of anticancer drug resistance, and how can the results obtained in the laboratory be quickly moved to a clinical setting? This review offers an overview of the microarray technology, including its recently associated strategies, such as array comparative genomic hybridization and promoter arrays. It also highlights some recent examples of microarray studies, which represent a first step toward a better understanding of drug resistance in cancer and, ultimately, personalized medicine.

摘要

化疗耐药性仍然是癌症患者成功治疗和获得更好预后的主要障碍。全基因组实验策略(如DNA微阵列)的出现改变了研究人员开展癌症研究的方式。人们满怀希望地认为,微阵列技术将有助于识别新的治疗干预靶点,更好地理解疾病过程,并最终提高生存率和实现更个性化的医疗。当前的问题是,将这些新技术应用于抗癌药物耐药性研究的最佳方法是什么,以及如何将实验室获得的结果迅速应用于临床?本综述概述了微阵列技术,包括其最近相关的策略,如阵列比较基因组杂交和启动子阵列。它还重点介绍了一些微阵列研究的最新实例,这些实例代表了朝着更好地理解癌症耐药性以及最终实现个性化医疗迈出的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验