Suppr超能文献

一种适应高温的调控型古菌磷酸丙糖异构酶的结构与功能

Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature.

作者信息

Walden Helen, Taylor Garry L, Lorentzen Esben, Pohl Ehmke, Lilie Hauke, Schramm Alexander, Knura Thomas, Stubbe Kim, Tjaden Britta, Hensel Reinhard

机构信息

Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, UK.

出版信息

J Mol Biol. 2004 Sep 17;342(3):861-75. doi: 10.1016/j.jmb.2004.07.067.

Abstract

Triosephophate isomerase (TIM) is a dimeric enzyme in eucarya, bacteria and mesophilic archaea. In hyperthermophilic archaea, however, TIM exists as a tetramer composed of monomers that are about 10% shorter than other eucaryal and bacterial TIM monomers. We report here the crystal structure of TIM from Thermoproteus tenax, a hyperthermophilic archaeon that has an optimum growth temperature of 86 degrees C. The structure was determined from both a hexagonal and an orthorhombic crystal form to resolutions of 2.5A and 2.3A, and refined to R-factors of 19.7% and 21.5%, respectively. In both crystal forms, T.tenax TIM exists as a tetramer of the familiar (betaalpha)(8)-barrel. In solution, however, and unlike other hyperthermophilic TIMs, the T.tenax enzyme exhibits an equilibrium between inactive dimers and active tetramers, which is shifted to the tetramer state through a specific interaction with glycerol-1-phosphate dehydrogenase of T.tenax. This observation is interpreted in physiological terms as a need to reduce the build-up of thermolabile metabolic intermediates that would be susceptible to destruction by heat. A detailed structural comparison with TIMs from organisms with growth optima ranging from 15 degrees C to 100 degrees C emphasizes the importance in hyperthermophilic proteins of the specific location of ionic interactions for thermal stability rather than their numbers, and shows a clear correlation between the reduction of heat-labile, surface-exposed Asn and Gln residues with thermoadaptation. The comparison confirms the increase in charged surface-exposed residues at the expense of polar residues.

摘要

磷酸丙糖异构酶(TIM)在真核生物、细菌和嗜温古菌中是一种二聚体酶。然而,在嗜热古菌中,TIM以四聚体形式存在,其单体比其他真核生物和细菌的TIM单体短约10%。我们在此报告嗜热栖热菌(一种最适生长温度为86摄氏度的嗜热古菌)的TIM晶体结构。该结构通过六方晶系和正交晶系晶体形式确定,分辨率分别为2.5埃和2.3埃,并分别精修至R因子为19.7%和21.5%。在两种晶体形式中,嗜热栖热菌TIM均以常见的(βα)8桶状四聚体形式存在。然而,在溶液中,与其他嗜热TIM不同,嗜热栖热菌的这种酶在无活性二聚体和活性四聚体之间呈现平衡,通过与嗜热栖热菌的甘油-1-磷酸脱氢酶的特异性相互作用,该平衡向四聚体状态转变。这一观察结果从生理学角度解释为需要减少易受热破坏的热不稳定代谢中间产物的积累。与生长最适温度范围从15摄氏度到100摄氏度的生物体的TIM进行详细的结构比较,强调了离子相互作用的特定位置对于嗜热蛋白热稳定性的重要性而非其数量,并显示出热不稳定的表面暴露的天冬酰胺和谷氨酰胺残基的减少与热适应之间存在明显的相关性。该比较证实了以极性残基为代价,表面暴露的带电荷残基增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验