Suppr超能文献

孤立分子和团簇中的自旋弛豫:斯特恩-盖拉赫实验的解释。

Spin relaxation in isolated molecules and clusters: the interpretation of Stern-Gerlach experiments.

作者信息

Knickelbein Mark B

机构信息

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

出版信息

J Chem Phys. 2004 Sep 15;121(11):5281-3. doi: 10.1063/1.1781156.

Abstract

Intramolecular spin relaxation may occur in isolated molecules or clusters provided that the density of rovibrational eigenstates is sufficiently high to serve as an energy bath and angular momentum is conserved. In the coupled, zero-field limit, total angular momentum (J) is the sum of spin (S) and rotational (N) momenta such that J and M(J) are good angular momentum quantum numbers. In the coupled limit, transitions between Zeeman levels (Delta M(J)++0) cannot occur in the absence of an external torque. However, in the high-field limit, J and M(J) are no longer good quantum numbers, as N and S are decoupled and only their projections on the z axis defined by the external field are invariant. In this case M(N) and M(S) remain as good quantum numbers so that angular momentum conserving transitions can occur subject to the selection rule Delta M(N)=-Delta M(S). Determination of the magnetic moments of isolated molecules and clusters via a thermodynamics-based analysis requires that their magnetizations are measured at sufficiently large fields that spin-rotation effects become negligible and the Zeeman level structure approaches the free-spin case.

摘要

分子内自旋弛豫可能发生在孤立分子或团簇中,前提是振转本征态的密度足够高,足以充当能量库,且角动量守恒。在耦合的零场极限下,总角动量(J)是自旋(S)和转动(N)动量之和,使得J和M(J)是好的角动量量子数。在耦合极限下,若没有外部转矩,塞曼能级之间的跃迁(ΔM(J)≠0)不会发生。然而,在高场极限下,J和M(J)不再是好的量子数,因为N和S解耦,只有它们在由外部场定义的z轴上的投影是不变的。在这种情况下,M(N)和M(S)仍然是好的量子数,因此角动量守恒跃迁可以根据选择规则ΔM(N)= -ΔM(S)发生。通过基于热力学的分析来确定孤立分子和团簇的磁矩,需要在足够大的场中测量它们的磁化强度,使得自旋 - 转动效应可以忽略不计,并且塞曼能级结构接近自由自旋情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验