Advani Aneel, Jones Neil, Shahar Yuval, Goldstein Mary K, Musen Mark A
Stanford Medical Informatics, Stanford University, CA 94025, USA.
Stud Health Technol Inform. 2004;107(Pt 2):1003-7.
We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.
我们开发了一种方法和算法,用于确定为基于指南的临床绩效指标创建质量审核方案的最佳方法。审核方案设计问题的一个重要要素是决定审核哪些指南要素。具体而言,问题在于如何以及何时将针对个体患者病例的特定指南要素汇总为基于人群的质量指标。所涉及的关键统计问题是,基于更一般人群的质量指标提高可靠性与以更高审核成本进行的个别病例调整但更具局限性的指标提高有效性之间的权衡。我们用于审核方案设计的智能算法基于对逐步进行病例调整的质量约束进行分层建模。我们使用基于统计可推广性系数的优化标准来选择要测量的质量约束。我们展示了来自一个针对高血压指南的已部署决策支持系统的该方法的结果。