Suppr超能文献

一种用于基于人群的质量审核协议自动设计的智能病例调整算法。

An intelligent case-adjustment algorithm for the automated design of population-based quality auditing protocols.

作者信息

Advani Aneel, Jones Neil, Shahar Yuval, Goldstein Mary K, Musen Mark A

机构信息

Stanford Medical Informatics, Stanford University, CA 94025, USA.

出版信息

Stud Health Technol Inform. 2004;107(Pt 2):1003-7.

Abstract

We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.

摘要

我们开发了一种方法和算法,用于确定为基于指南的临床绩效指标创建质量审核方案的最佳方法。审核方案设计问题的一个重要要素是决定审核哪些指南要素。具体而言,问题在于如何以及何时将针对个体患者病例的特定指南要素汇总为基于人群的质量指标。所涉及的关键统计问题是,基于更一般人群的质量指标提高可靠性与以更高审核成本进行的个别病例调整但更具局限性的指标提高有效性之间的权衡。我们用于审核方案设计的智能算法基于对逐步进行病例调整的质量约束进行分层建模。我们使用基于统计可推广性系数的优化标准来选择要测量的质量约束。我们展示了来自一个针对高血压指南的已部署决策支持系统的该方法的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验