Suppr超能文献

有效利用非平衡测量来估计分子系统的自由能差。

Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems.

作者信息

Ytreberg F Marty, Zuckerman Daniel M

机构信息

Center for Computational Biology and Bioinformatics, University of Pittsburgh, 200 Lothrop St., Pittsburgh, Pennsylvania 15261, USA.

出版信息

J Comput Chem. 2004 Nov 15;25(14):1749-59. doi: 10.1002/jcc.20103.

Abstract

A promising method for calculating free energy differences DeltaF is to generate nonequilibrium data via "fast-growth" simulations or by experiments--and then use Jarzynski's equality. However, a difficulty with using Jarzynski's equality is that DeltaF estimates converge very slowly and unreliably due to the nonlinear nature of the calculation--thus requiring large, costly data sets. The purpose of the work presented here is to determine the best estimate for DeltaF given a (finite) set of work values previously generated by simulation or experiment. Exploiting statistical properties of Jarzynski's equality, we present two fully automated analyses of nonequilibrium data from a toy model, and various simulated molecular systems. Both schemes remove at least several k(B)T of bias from DeltaF estimates, compared to direct application of Jarzynski's equality, for modest sized data sets (100 work values), in all tested systems. Results from one of the new methods suggest that good estimates of DeltaF can be obtained using 5-40-fold less data than was previously possible. Extending previous work, the new results exploit the systematic behavior of bias due to finite sample size. A key innovation is better use of the more statistically reliable information available from the raw data.

摘要

一种计算自由能差ΔF的有前景的方法是通过“快速增长”模拟或实验生成非平衡数据,然后使用雅尔津斯基等式。然而,使用雅尔津斯基等式的一个困难在于,由于计算的非线性性质,ΔF估计值收敛非常缓慢且不可靠,因此需要大量昂贵的数据集。本文所展示工作的目的是,在给定一组先前通过模拟或实验生成的功值(有限)的情况下,确定ΔF的最佳估计值。利用雅尔津斯基等式的统计特性,我们对一个玩具模型以及各种模拟分子系统的非平衡数据进行了两种全自动分析。在所有测试系统中,对于中等规模的数据集(100个功值),与直接应用雅尔津斯基等式相比,这两种方案都至少从ΔF估计值中消除了几个k(B)T的偏差。其中一种新方法的结果表明,使用比以前少5到40倍的数据就可以获得良好的ΔF估计值。扩展先前的工作,新结果利用了由于有限样本量导致的偏差的系统行为。一个关键创新是更好地利用原始数据中统计上更可靠的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验