Stigter J D, Beck M B
Systems and Control Group, Wageningen University and Research Center, Bornsesteeg 59, Wageningen 6708 PD, The Netherlands.
Math Biosci. 2004 Oct;191(2):143-58. doi: 10.1016/j.mbs.2004.06.002.
Recursive state and parameter reconstruction is a well-established field in control theory. In the current paper we derive a continuous-discrete version of recursive prediction error algorithm and apply the filter in an environmental and biological setting as a possible alternative to the well-known extended Kalman filter. The framework from which the derivation is started is the so-called 'innovations-format' of the (continuous time) system model, including (discrete time) measurements. After the algorithm has been motivated and derived, it is subsequently applied to hypothetical and 'real-life' case studies including reconstruction of biokinetic parameters and parameters characterizing the dynamics of a river in the United Kingdom. Advantages and characteristics of the method are discussed.
递归状态和参数重构是控制理论中一个成熟的领域。在本文中,我们推导了递归预测误差算法的连续-离散版本,并将该滤波器应用于环境和生物领域,作为著名的扩展卡尔曼滤波器的一种可能替代方案。推导所基于的框架是(连续时间)系统模型的所谓“新息形式”,包括(离散时间)测量值。在阐述并推导了该算法之后,我们随后将其应用于假设的和“实际”的案例研究,包括生物动力学参数的重构以及表征英国一条河流动力学的参数。文中讨论了该方法的优点和特点。