Aquilanti Vincenzo, Lombardi Andrea, Sevryuk Mikhail B
Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy.
J Chem Phys. 2004 Sep 22;121(12):5579-89. doi: 10.1063/1.1785785.
Rigorous definitions are presented for the kinematic angular momentum K of a system of classical particles (a concept dual to the conventional angular momentum J), the angular momentum L(xi) associated with the moments of inertia, and the contributions to the total kinetic energy of the system from various modes of the motion of the particles. Some key properties of these quantities are described-in particular, their invariance under any orthogonal coordinate transformation and the inequalities they are subject to. The main mathematical tool exploited is the singular value decomposition of rectangular matrices and its differentiation with respect to a parameter. The quantities introduced employ as ingredients particle coordinates and momenta, commonly available in classical trajectory studies of chemical reactions and in molecular dynamics simulations, and thus are of prospective use as sensitive and immediately calculated indicators of phase transitions, isomerizations, onsets of chaotic behavior, and other dynamical critical phenomena in classical microaggregates, such as nanoscale clusters.
本文给出了经典粒子系统的运动角动量(K)(一个与传统角动量(J)对偶的概念)、与转动惯量相关的角动量(L(\xi))以及粒子各种运动模式对系统总动能贡献的严格定义。描述了这些量的一些关键性质,特别是它们在任何正交坐标变换下的不变性以及所满足的不等式。所利用的主要数学工具是矩形矩阵的奇异值分解及其对参数的微分。所引入的量包含粒子坐标和动量,这些在化学反应的经典轨迹研究和分子动力学模拟中通常是可用的,因此有望作为敏感且可直接计算的指标,用于指示经典微聚集体(如纳米级团簇)中的相变、异构化、混沌行为的起始以及其他动力学临界现象。