Munro Orde Quentin, Mariah Lynette
University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa.
Acta Crystallogr B. 2004 Oct;60(Pt 5):598-608. doi: 10.1107/S0108768104019846. Epub 2004 Sep 15.
The single-crystal X-ray diffraction analysis of 2-[[(4-nitrophenoxy)sulfonyl]oxy]phenyl 4-nitrophenyl sulfate (4) reveals that an interesting intermolecular or extended structure (a one-dimensional hydrogen-bonded polymer) is formed because of pairs of intermolecular (aryl)C--H...O(nitro) hydrogen bonds between the C(2) symmetry monomer units. The axis of the hydrogen-bonded polymer runs co-linear with the [101] face diagonal of the monoclinic unit cell. Molecular mechanics calculations using a modified version of the MM+ force field and a random conformational search algorithm have been used to locate the important low-energy in vacuo conformations of (4). The MM-calculated conformation of (4) that most closely matches the X-ray structure lies some 26.5 kJ mol(-1) higher in energy than the global minimum-energy conformation, consistent with the notion that the crystallographically observed molecular architecture of (4) is a local energy minimum in the absence of its crystal lattice environment. Since the X-ray conformation of (4) was correctly calculated only when all of the neighbouring molecules in the crystal lattice were included in the simulation, hydrogen bonding and other non-bonded interactions in the crystal lattice clearly dictate the experimentally observed conformation of (4). Quantum chemical calculations (AM1 method) confirm the critical role played by the intermolecular (aryl)C--H...O(nitro) hydrogen bonds in controlling the crystallographically observed conformation of (4) and show that self-recognition in this system by hydrogen bonding is favoured on electrostatic grounds. Collectively, the molecular simulations suggest that because the lowest-energy molecular conformation of (4) does not permit the formation of an extended hydrogen-bonded 'supramolecular' structure, it is not the preferred conformation in the crystalline solid state.
对4-硝基苯基硫酸-2-[[(4-硝基苯氧基)磺酰基]氧基]苯酯(4)的单晶X射线衍射分析表明,由于C(2)对称单体单元之间存在分子间(芳基)C-H…O(硝基)氢键对,形成了一种有趣的分子间或扩展结构(一维氢键聚合物)。氢键聚合物的轴与单斜晶胞的[101]面角线共线。使用MM+力场的修改版本和随机构象搜索算法进行的分子力学计算,已用于确定(4)在真空中重要的低能构象。MM计算得到的(4)的构象与X射线结构最接近,但能量比全局最低能量构象高约26.5 kJ mol-1,这与以下观点一致:即(4)的晶体学观察到的分子结构在没有其晶格环境时是局部能量最小值。由于只有当晶格中所有相邻分子都包含在模拟中时,(4)的X射线构象才能正确计算,因此晶格中的氢键和其他非键相互作用显然决定了实验观察到的(4)的构象。量子化学计算(AM1方法)证实了分子间(芳基)C-H…O(硝基)氢键在控制(4)的晶体学观察到的构象中所起的关键作用,并表明基于静电原因,该体系中通过氢键的自识别是有利的。总的来说,分子模拟表明,由于(4)的最低能量分子构象不允许形成扩展的氢键“超分子”结构,因此它不是晶体固态中的首选构象。