Iskander D Robert, Collins Michael J, Mioschek Siegfried, Trunk Martin
Contact Lens and Visual Optics Laboratory, School of Optometry, Queensland University of Technology, Kelvin Grove Q4059, Brisbane, Australia.
IEEE Trans Biomed Eng. 2004 Sep;51(9):1619-27. doi: 10.1109/TBME.2004.827546.
Determination of two-dimensional characteristics of the anterior surface of the eye is becoming increasingly important in modern optometry and ophthalmology practice. In particular, accurate estimation of the pupil size and centration is crucial in customized refractive surgery, corneal transplantation, and advanced contact lens fitting. The pupil parameters change under different lighting conditions so they often need to be related to some fixed reference such as the limbus outline. However, current commercial pupillometers do not estimate limbus position. We present a novel algorithm for automatic extraction of pupil parameters from digital images that takes the relative limbus information into account. The algorithm utilizes several customized image processing techniques that form a robust procedure which performs well for a wide range of clinical images. We apply the developed algorithm to images obtained by a standard digital camera, and specialized ophthalmic instruments such as a wavefront sensor and a high-speed imaging system.
在现代验光和眼科实践中,确定眼睛前表面的二维特征变得越来越重要。特别是,在定制屈光手术、角膜移植和先进的隐形眼镜验配中,准确估计瞳孔大小和中心位置至关重要。瞳孔参数在不同光照条件下会发生变化,因此它们通常需要与一些固定参考物相关联,例如角膜缘轮廓。然而,目前的商用瞳孔计无法估计角膜缘位置。我们提出了一种从数字图像中自动提取瞳孔参数的新算法,该算法考虑了相对角膜缘信息。该算法利用了几种定制的图像处理技术,形成了一个强大的程序,对广泛的临床图像都能很好地运行。我们将开发的算法应用于由标准数码相机以及诸如波前传感器和高速成像系统等专业眼科仪器获取的图像。