Krishnamurthy Vikram, Chung Shin-Ho
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.
IEEE Trans Nanobioscience. 2003 Dec;2(4):266-78. doi: 10.1109/tnb.2003.820275.
We present discrete stochastic optimization algorithms that adaptively learn the Nernst potential in membrane ion channels. The proposed algorithms dynamically control both the ion channel experiment and the resulting hidden Markov model signal processor and can adapt to time-varying behavior of ion channels. One of the most important properties of the proposed algorithms is their self-learning capability--they spend most of the computational effort at the global optimizer (Nernst potential). Numerical examples illustrate the performance of the algorithms on computer-generated synthetic data.
我们提出了离散随机优化算法,该算法能自适应地学习膜离子通道中的能斯特电位。所提出的算法动态地控制离子通道实验以及由此产生的隐马尔可夫模型信号处理器,并且能够适应离子通道随时间变化的行为。所提出算法最重要的特性之一是其自学习能力——它们将大部分计算工作花费在全局优化器(能斯特电位)上。数值示例说明了这些算法在计算机生成的合成数据上的性能。