Suppr超能文献

一种基于内容和元数据整合的艺术检索系统。

An integrated content and metadata based retrieval system for art.

作者信息

Lewis Paul H, Martinez Kirk, Abas Fazly Salleh, Fauzi Mohammad Faizal Ahmad, Chan Stephen C Y, Addis Matthew J, Boniface Mike J, Grimwood Paul, Stevenson Alison, Lahanier Christian, Stevenson James

机构信息

School of Electronics and Computer Science, University of Southampton, Southampton, UK.

出版信息

IEEE Trans Image Process. 2004 Mar;13(3):302-13. doi: 10.1109/tip.2003.821346.

Abstract

A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

摘要

在博物馆和美术馆图像收藏领域提出了一种新的图像检索方法。为解决特定检索任务而开发的专业算法,与更传统的内容和元数据检索方法相结合,并在分布式架构中实现,以无缝方式提供跨收藏搜索和导航。外部系统可以使用互操作性协议和开放标准访问不同的收藏,这些协议和标准已得到扩展,以适应基于内容以及基于文本的检索范式。在对整个系统进行简要概述之后,我们描述了一些专业图像分析算法的新颖设计和评估,包括基于子图像查询的图像检索方法、基于极低质量图像的检索以及使用画布裂纹图案的检索。我们展示了由主要博物馆和美术馆组成的实际终端用户如何通过访问分布式但集成的数字收藏来获得有效的检索结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验