Mizuno Hideyuki, Iseki Yasushi, Urakabe Eriko, Suda Mitsuru, Kanazawa Mitsutaka, Kitagawa Atsushi, Tomitani Takehiro, Nakamura Yuzuru Kutsutani, Kanai Tatsuaki, Ishii Keizo
Department of Technical Radiology, Saitama Cancer Center, 818 Komurao, Ina-machi, Kita-Adachi-gun, Saitama-pref. 362-0806, Jap.
Igaku Butsuri. 2004;24(2):37-48.
The (10)C and (11)C beam stop position in a homogeneous phantom was measured using the range verification system in HIMAC. This system was developed to clear uncertainty of beam range within the patient body in heavy ion radiotherapy. In this system, a target is irradiated with RI beams ((11)C or (10)C) and the distribution of the beam end-points are measured by a positron camera. To inspect the precision of the measurement, three experiments were done, simple PMMA phantom irradiation, empirical beam stop position measurements using a range shifter and boundary irradiation using PMMA and lung phantom. Results of the first two experiments were consistent. Consequently, a 0.2 mm standard deviation of statistical error measurement was possible with 250 determinations. For the third experiment, we compared the precision using (10)C and (11)C beams. The boundary of the PMMA and lung phantom was irradiated with both beams to maximize the positron range effect in the beam range measurement. Consequently, no significant difference was observed between the two beams in spite of the different positron range. Thus, we conclude that the (10)C beam was useful for clinical application because of its good statistics owing to the short half-life.
在HIMAC的均匀体模中,使用射程验证系统测量了(10)C和(11)C束流阻挡位置。该系统是为消除重离子放射治疗中患者体内束流射程的不确定性而开发的。在该系统中,用放射性核素束流((11)C或(10)C)照射靶区,并通过正电子相机测量束流端点的分布。为检验测量精度,进行了三个实验:简单的聚甲基丙烯酸甲酯(PMMA)体模照射、使用射程移位器的经验性束流阻挡位置测量以及使用PMMA和肺部体模的边界照射。前两个实验的结果一致。因此,通过250次测定,统计误差测量的标准偏差可达0.2毫米。对于第三个实验,我们比较了使用(10)C和(11)C束流时的精度。用这两种束流照射PMMA和肺部体模的边界,以在束流射程测量中最大化正电子射程效应。因此,尽管正电子射程不同,但在这两种束流之间未观察到显著差异。因此,我们得出结论,(10)C束流因其半衰期短而具有良好的统计学特性,可用于临床应用。