Blumenthal R D, Sharkey R M, Goldenberg D M
Garden State Cancer Center and Center for Molecular Medicine and Immunology, Newark, N.J. 07103.
J Natl Cancer Inst. 1992 Mar 18;84(6):399-407. doi: 10.1093/jnci/84.6.399.
In previous studies in a tumor-bearing hamster model, we demonstrated protection and rescue from radioantibody-induced hematopoietic toxicity by treatment with interleukin-1 (IL-1) before or after radioantibody treatment, as well as attenuation of duration of myelosuppression by administration of granulocyte-macrophage colony-stimulating factor (GM-CSF).
The purpose of this study was to evaluate the ability of recombinant human IL-1 and recombinant murine GM-CSF to reduce myelosuppression and increase survival of non-tumor-bearing, female BALB/c mice while escalating the maximal tolerated dose (MTD) of radioantibody--the highest dose that results in no deaths.
We administered IL-1 for 7 days at 1 x 10(3) U twice a day and GM-CSF starting on the same day for 12 days at a dose of 0.5 micrograms twice a day, alone or in combination. The doses of iodine 131 (131I)-NP-4 IgG (anti-carcinoembryonic antigen monoclonal antibody) radioantibody used were 270, 340, and 370 microCi; the MTD in mice is 270 microCi. The 12-day schedule of cytokine administration was initiated at various times with respect to the radioantibody dose: on the same day; 6 or 3 days before radioantibody; or 3, 6, or 9 days after radioantibody. Treatment efficacy was measured by survival and white blood cell and platelet counts.
A 25% increase to 340 microCi of radioantibody used alone resulted in 100% lethality within 25 days of treatment. The optimal cytokine schedule was a 12-day treatment with the combination of cytokines initiated 3 days before radioantibody. This treatment resulted in 100% survival and significantly reduced the magnitude and duration of hematopoietic toxicity. The increase in radioantibody dose resulted in an 85%-95% decrease in peripheral white blood cells and a 75%-85% reduction in platelets within 14 days of radioantibody administration. Further dose escalation to 370 microCi of radioantibody used alone (37% increase above the MTD) resulted in lethality to 12% of the mice. IL-1 or GM-CSF alone was minimally effective.
These studies are the first demonstration that cytokines could be used to reduce radioantibody-induced leukopenia and thrombocytopenia and to escalate the tolerated dose of radioantibody by 25%.
We plan to evaluate the potential therapeutic benefit of a 25% increase in radioantibody dose in a tumor-bearing mouse model.
在先前对荷瘤仓鼠模型的研究中,我们证明,在放射性抗体治疗之前或之后用白细胞介素 -1(IL-1)进行治疗,可预防并挽救放射性抗体诱导的造血毒性,并且通过给予粒细胞 - 巨噬细胞集落刺激因子(GM-CSF)可缩短骨髓抑制的持续时间。
本研究的目的是评估重组人IL-1和重组鼠GM-CSF在提高放射性抗体最大耐受剂量(MTD,即不会导致死亡的最高剂量)的同时,降低无肿瘤雌性BALB/c小鼠骨髓抑制并提高其存活率的能力。
我们单独或联合给予IL-1,剂量为1×10³单位,每天两次,共7天;GM-CSF从同一天开始给予,剂量为0.5微克,每天两次,共12天。所使用的碘131(¹³¹I)-NP-4 IgG(抗癌胚抗原单克隆抗体)放射性抗体的剂量分别为270、340和370微居里;小鼠的MTD为270微居里。细胞因子给药的12天方案在与放射性抗体剂量不同的时间开始:同一天;放射性抗体给药前6天或3天;或放射性抗体给药后3天、6天或9天。通过存活率以及白细胞和血小板计数来衡量治疗效果。
单独使用的放射性抗体剂量增加25%至340微居里,会导致治疗后25天内100%的致死率。最佳的细胞因子给药方案是在放射性抗体给药前3天开始联合使用细胞因子进行12天治疗。这种治疗可使存活率达到100%,并显著降低造血毒性的程度和持续时间。放射性抗体剂量增加会导致给药后14天内外周白细胞减少85% - 95%,血小板减少75% - 85%。进一步将单独使用的放射性抗体剂量提高到370微居里(比MTD增加37%),导致12%的小鼠死亡。单独使用IL-1或GM-CSF效果甚微。
这些研究首次证明,细胞因子可用于减轻放射性抗体诱导的白细胞减少和血小板减少,并使放射性抗体的耐受剂量提高25%。
我们计划在荷瘤小鼠模型中评估将放射性抗体剂量提高25%的潜在治疗益处。