Krygowski Tadeusz M, Ejsmont Krzysztof, Stepień Beata T, Cyrański Michał K, Poater Jordi, Solà Miquel
Department of Chemistry, University of Warsaw, L. Pasteura 1, 02-093 Warsaw, Poland.
J Org Chem. 2004 Oct 1;69(20):6634-40. doi: 10.1021/jo0492113.
Molecular geometries of benzene and its 18 monosubstituted derivatives were optimized at B3LYP/6-311+G** level of theory. The changes of pi-electron delocalization of the benzene fragment were estimated by use of aromatic stabilization energies (ASE) based on different homodesmotic reaction schemes, geometry-based HOMA model, magnetism-based NICS, NICS(1), NICS(1)zz, and an electronic delocalization index, PDI, derived from the AIM theory. Apart from aromatic stabilization energies the other descriptors of aromaticity vary to a very small extent, indicating high resistance of the pi-electron structure to the substituent effect. This is somewhat analogous to a tendency of benzene systems to retain their initial pi-electron structure during the reaction course that leads to aromatic substitution.
在B3LYP/6-311+G**理论水平下对苯及其18种单取代衍生物的分子几何结构进行了优化。基于不同的同系反应方案,利用芳香稳定能(ASE)、基于几何结构的HOMA模型、基于磁性的NICS、NICS(1)、NICS(1)zz以及源自AIM理论的电子离域指数PDI,估算了苯片段的π电子离域变化。除芳香稳定能外,其他芳香性描述符变化非常小,表明π电子结构对取代基效应具有高抗性。这在某种程度上类似于苯体系在导致芳香取代的反应过程中保持其初始π电子结构的趋势。