Suppr超能文献

乳腺癌常规石蜡切片上雌激素受体的免疫组织化学显示:与冰冻切片及酶免疫测定法的比较

Immunohistochemical demonstration of estrogen receptors on routine paraffin sections of breast carcinomas: a comparison with frozen sections and an enzyme immunoassay.

作者信息

Stylianodou A, Papadimitriou C S

机构信息

Department of Pathology, School of Medicine, University of Ioannina, Greece.

出版信息

Oncology. 1992;49(1):15-21. doi: 10.1159/000227003.

Abstract

In this study the monoclonal antibody ER-ICA (HSpy222) to human estrogen receptor (ER) protein and the peroxidase-antiperoxidase method was used to detect the presence of ER in 83 cryostat sections and in 68 paraffin sections pretreated with pronase in a total of 86 primary breast cancers. In 72 out of the 86 studied cases, a comparative evaluation was performed between the semiquantitative ER-ICA method and the quantitative enzyme immunoassay ER-EIA. A good correlation was found between the semiquantitative ER-ICA results in cryostat and paraffin sections (95.38%; p less than 0.01) in a total of 65 compared cases, concerning both the percentage of ER-positive or negative cells and the staining intensity. In addition, the overall appraisal of the lesion as ER-ICA-positive or ER-ICA-negative as well as the ER-ICA staining intensity and the proportion of ER-ICA stained cancer cells, in both cryostat and paraffin sections, correlated significantly with the mean values of fmol ER/mg determined by the enzyme immunoassay ER-EIA. The performance of the ER-ICA method on paraffin sections as used in the present study proved to be a reliable and reproducible immunohistochemical technique.

摘要

在本研究中,采用针对人雌激素受体(ER)蛋白的单克隆抗体ER-ICA(HSpy222)和过氧化物酶-抗过氧化物酶方法,检测了86例原发性乳腺癌的83个冰冻切片和68个用链霉蛋白酶预处理的石蜡切片中ER的存在情况。在86例研究病例中的72例中,对ER-ICA半定量方法和定量酶免疫测定法ER-EIA进行了比较评估。在总共65例比较病例中,冰冻切片和石蜡切片中ER-ICA半定量结果之间在ER阳性或阴性细胞百分比以及染色强度方面均发现有良好的相关性(95.38%;p<0.01)。此外,冰冻切片和石蜡切片中病变作为ER-ICA阳性或阴性的总体评估以及ER-ICA染色强度和ER-ICA染色癌细胞比例,与酶免疫测定法ER-EIA测定的fmol ER/mg平均值显著相关。本研究中使用的石蜡切片上ER-ICA方法的表现被证明是一种可靠且可重复的免疫组织化学技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验