Suppr超能文献

Trapping of excitons at chemical defects in polyethylene.

作者信息

Ceresoli D, Tosatti E, Scandolo S, Santoro G, Serra S

机构信息

International School for Advanced Studies (SISSA), via Beirut 2, I-34014 Trieste, Italy.

出版信息

J Chem Phys. 2004 Oct 1;121(13):6478-84. doi: 10.1063/1.1783876.

Abstract

In a previous paper we studied an injected electron-hole pair in crystalline polyethylene (PE) and found that the exciton becomes weakly self-trapped in a narrow interchain pocket comprised between two gauche defects. Despite the large energy stored in the trapped excitation, there did not appear to be a direct nonradiative channel for electron-hole recombination. Actual polyethylene systems of practical use are, however, neither crystalline nor pure. To understand the fate of an electron-hole pair in the impure case, we studied by ab initio simulations the evolution of an exciton trapped on three common chemical defects found in polyethylene: a grafted carbonyl (C=O); an intrachain vinyl group (C=C); a grafted carboxyl (COOH). Ab initio simulations lead to predict three different outcomes: trapping, nonradiative recombination, and homolitic bond-breaking, respectively. This suggests that extrinsic self-trapping of electron-hole pairs over chemical defects inside the quasicrystalline fraction of PE could be relevant for electrical damage in high-voltage cables.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验