Oja Vello, Bichele Irina, Hüve Katja, Rasulov Bahtijor, Laisk Agu
Tartu Ulikooli Molekulaar-ja Rakubioloogia Instituut, Riia tn. 23, Tartu, 51010, Estonia.
Biochim Biophys Acta. 2004 Oct 4;1658(3):225-34. doi: 10.1016/j.bbabio.2004.06.006.
We describe a method of reductive titration of photosystem I (PSI) density in leaves by generating a known amount of electrons (e-) in photosystem II (PSII) and measuring the resulting change in optical signal as these electrons arrive at pre-oxidized PSI. The method complements a recently published method of oxidative titration of PSI donor side e- carriers P700, plastocyanin (PC) and cytochrome f by illuminating a darkened leaf with far-red light (FRL) [V. Oja, H. Eichelmann, R.B. Peterson, B. Rasulov, A. Laisk, Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves, Photosynth. Res. 78 (2003) 1-15], presenting a nondestructive way for the determination of PSI density in intact leaves. Experiments were carried out on leaves of birch (Betula pendula Roth) and several other species grown outdoors. Single-turnover flashes of different quantum dose were applied to leaves illuminated with FRL, and the FRL was shuttered off immediately after the flash. The number of e- generated in PSII by the flash was measured as four times O2 evolution following the flash. Reduction of the pre-oxidized P700 and PC was followed as a change in leaf transmittance using a dual-wavelength detector ED P700DW (810 minus 950 nm, H. Walz, Effeltrich, Germany). The ED P700DW signal was deconvoluted into P700+ and PC+ components using the abovementioned oxidative titration method. The P700+ component was related to the absolute number of e- that reduced the P700+ to calculate the extinction coefficient. The effective differential extinction coefficient of P700+ at 810-950 nm was 0.40+/-0.06 (S.D.)% of transmittance change per micromol P700+ m(-2) or 17.6+/-2.4 mM(-1) cm(-1). The result shows that the scattering medium of the leaf effectively increases the extinction coefficient by about two times and its variation (+/-14% S.D.) is mainly caused by light-scattering properties of the leaf.
我们描述了一种通过在光系统II(PSII)中产生已知量的电子(e-)并测量这些电子到达预氧化的光系统I(PSI)时产生的光信号变化,来对叶片中光系统I(PSI)密度进行还原滴定的方法。该方法补充了最近发表的一种通过用远红光(FRL)照射暗化叶片来氧化滴定PSI供体侧电子载体P700、质体蓝素(PC)和细胞色素f的方法[V. Oja,H. Eichelmann,R.B. Peterson,B. Rasulov,A. Laisk,解读820nm信号:叶片中供体侧的氧化还原状态和光系统I的量子产率,光合作用研究。78(2003)1-15],提供了一种无损测定完整叶片中PSI密度的方法。实验在户外生长的桦树(Betula pendula Roth)和其他几种植物的叶片上进行。对用FRL照射的叶片施加不同量子剂量的单周转闪光,闪光后立即关闭FRL。闪光在PSII中产生的电子数通过闪光后四倍的O2释放量来测量。使用双波长探测器ED P700DW(810减去950nm,德国Effeltrich的H. Walz公司),将预氧化的P700和PC的还原作为叶片透光率的变化进行跟踪。使用上述氧化滴定方法将ED P700DW信号解卷积为P700+和PC+成分。P700+成分与将P700+还原的电子绝对数相关,以计算消光系数。P700+在810 - 950nm处的有效微分消光系数为每微摩尔P700+ m(-2)透光率变化的0.40±0.06(标准差)%或17.6±2.4 mM(-1) cm(-1)。结果表明,叶片的散射介质有效地将消光系数提高了约两倍,其变化(±14%标准差)主要由叶片的光散射特性引起。