Mee Christopher J, Pym Edward C G, Moffat Kevin G, Baines Richard A
Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
J Neurosci. 2004 Oct 6;24(40):8695-703. doi: 10.1523/JNEUROSCI.2282-04.2004.
Dynamic changes in synaptic connectivity and strength, which occur during both embryonic development and learning, have the tendency to destabilize neural circuits. To overcome this, neurons have developed a diversity of homeostatic mechanisms to maintain firing within physiologically defined limits. In this study, we show that activity-dependent control of mRNA for a specific voltage-gated Na+ channel [encoded by paralytic (para)] contributes to the regulation of membrane excitability in Drosophila motoneurons. Quantification of para mRNA, by real-time reverse-transcription PCR, shows that levels are significantly decreased in CNSs in which synaptic excitation is elevated, whereas, conversely, they are significantly increased when synaptic vesicle release is blocked. Quantification of mRNA encoding the translational repressor pumilio (pum) reveals a reciprocal regulation to that seen for para. Pumilio is sufficient to influence para mRNA. Thus, para mRNA is significantly elevated in a loss-of-function allele of pum (pum(bemused)), whereas expression of a full-length pum transgene is sufficient to reduce para mRNA. In the absence of pum, increased synaptic excitation fails to reduce para mRNA, showing that Pum is also necessary for activity-dependent regulation of para mRNA. Analysis of voltage-gated Na+ current (I(Na)) mediated by para in two identified motoneurons (termed aCC and RP2) reveals that removal of pum is sufficient to increase one of two separable I(Na) components (persistent I(Na)), whereas overexpression of a pum transgene is sufficient to suppress both components (transient and persistent). We show, through use of anemone toxin (ATX II), that alteration in persistent I(Na) is sufficient to regulate membrane excitability in these two motoneurons.
在胚胎发育和学习过程中发生的突触连接性和强度的动态变化,往往会使神经回路不稳定。为了克服这一点,神经元已经发展出多种稳态机制,以将放电维持在生理定义的范围内。在这项研究中,我们表明,对一种特定电压门控钠通道(由麻痹基因(para)编码)的mRNA进行的活性依赖性控制,有助于调节果蝇运动神经元的膜兴奋性。通过实时逆转录PCR对para mRNA进行定量分析,结果显示,在突触兴奋升高的中枢神经系统中,其水平显著降低,而相反,当突触小泡释放被阻断时,其水平则显著升高。对编码翻译抑制因子pumilio(pum)的mRNA进行定量分析,结果显示其与para呈现相反的调节关系。Pumilio足以影响para mRNA。因此,在pum的功能缺失等位基因(pum(困惑))中,para mRNA显著升高,而全长pum转基因的表达足以降低para mRNA。在没有pum的情况下,增加的突触兴奋无法降低para mRNA,这表明Pum对于para mRNA的活性依赖性调节也是必需的。对由para介导的两个已鉴定运动神经元(称为aCC和RP2)中的电压门控钠电流(I(Na))进行分析,结果显示,去除pum足以增加两个可分离的I(Na)成分之一(持续性I(Na)),而pum转基因的过表达足以抑制这两个成分(瞬时性和持续性)。我们通过使用海葵毒素(ATX II)表明,持续性I(Na)的改变足以调节这两个运动神经元的膜兴奋性。