Suppr超能文献

随机和规则叶序模式的统计识别。

Statistical recognition of random and regular phyllotactic patterns.

作者信息

Jeune Bernard, Barabé Denis

机构信息

Laboratoire de Cytologie Expérimentale et Morphogenèse végétale, Université Pierre et Marie Curie, Bât. N2, 4 place Jussieu, 75 252 Paris Cedex 05, France.

出版信息

Ann Bot. 2004 Dec;94(6):913-7. doi: 10.1093/aob/mch213. Epub 2004 Oct 11.

Abstract

AIMS

A statistical method used in ecology is adapted to characterize the degree of order in phyllotactic systems.

SCOPE

The test consists of subdividing a planar projection of the stem apical meristem into 16 sectors and counting the number of primordia appearing in each. By dividing the sum of squared deviations by the mean number of primordia per sector the chi-square (chi2) is obtained. When there are a total number of 20 primordia, if the chi2 is less than 6.26, the phyllotaxis is spiral; if it is between 6.26 and 27.5 the phyllotaxis is random; and if it is greater than 27.5, the phyllotaxis is distichous or whorled (level of significance alpha = 5 %). It is also possible to remove one or more sectors. If there are k sectors, the two critical values delimiting the random zone will be found in a chi2 table for k - 1 degrees of freedom.

CONCLUSIONS

The method is applied to the analysis of sho mutants described by Itoh et al. in 2000 (Plant Cell 12: 2161-2174). The results obtained are in agreement with the theoretical analysis showing that a whorled or spiral phyllotactic system may contain a certain number of randomly distributed elements without losing its regular global structure.

摘要

目的

采用一种生态学中使用的统计方法来表征叶序系统的有序程度。

范围

该测试包括将茎尖分生组织的平面投影细分为16个扇区,并计算每个扇区中出现的原基数量。通过将偏差平方和除以每个扇区的平均原基数量,可得到卡方值(chi2)。当原基总数为20时,如果卡方值小于6.26,则叶序为螺旋状;如果在6.26和27.5之间,则叶序是随机的;如果大于27.5,则叶序为对生或轮状(显著性水平α = 5%)。也可以移除一个或多个扇区。如果有k个扇区,则在自由度为k - 1的卡方表中找到界定随机区域的两个临界值。

结论

该方法应用于对伊藤等人在2000年描述的sho突变体的分析(《植物细胞》12:2161 - 2174)。所得结果与理论分析一致,表明轮状或螺旋状叶序系统可能包含一定数量的随机分布元素,而不会失去其规则的整体结构。

相似文献

1
Statistical recognition of random and regular phyllotactic patterns.
Ann Bot. 2004 Dec;94(6):913-7. doi: 10.1093/aob/mch213. Epub 2004 Oct 11.
2
A stochastic approach to phyllotactic patterns analysis.
J Theor Biol. 2006 Jan 7;238(1):52-9. doi: 10.1016/j.jtbi.2005.05.036. Epub 2005 Sep 19.
5
Geometrical relationships specifying the phyllotactic pattern of aquatic plants.
Am J Bot. 2003 Aug;90(8):1131-43. doi: 10.3732/ajb.90.8.1131.
6
Phyllotaxis.
Curr Biol. 2017 Sep 11;27(17):R882-R887. doi: 10.1016/j.cub.2017.05.069.
7
A new mathematical model of phyllotaxis to solve the genuine puzzle spiromonostichy.
J Plant Res. 2024 Jan;137(1):143-155. doi: 10.1007/s10265-023-01503-2. Epub 2023 Oct 13.
9
A plausible model of phyllotaxis.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1301-6. doi: 10.1073/pnas.0510457103. Epub 2006 Jan 23.
10
Noise and robustness in phyllotaxis.
PLoS Comput Biol. 2012;8(2):e1002389. doi: 10.1371/journal.pcbi.1002389. Epub 2012 Feb 16.

引用本文的文献

1
Understanding the unique flowering sequence in Dipsacus fullonum: Evidence from geometrical changes during head development.
PLoS One. 2017 Mar 22;12(3):e0174091. doi: 10.1371/journal.pone.0174091. eCollection 2017.
3
Noise and robustness in phyllotaxis.
PLoS Comput Biol. 2012;8(2):e1002389. doi: 10.1371/journal.pcbi.1002389. Epub 2012 Feb 16.
4
An assessment of morphogenetic fluctuation during reproductive phase change in Arabidopsis.
Ann Bot. 2011 May;107(6):1017-27. doi: 10.1093/aob/mcr039. Epub 2011 Mar 1.

本文引用的文献

1
The use of entropy to analyze phyllotactic mutants: a theoretical analysis.
Plant Cell. 2004 Apr;16(4):804-6. doi: 10.1105/tpc.160440.
4
Control of phyllotaxy in maize by the abphyl1 gene.
Development. 1999 Jan;126(2):315-23. doi: 10.1242/dev.126.2.315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验