Matsuyama Akihiko
Department of Bioscience and Bioinformatics, Faculty of Computer Science and System Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan.
J Chem Phys. 2004 Oct 22;121(16):8098-103. doi: 10.1063/1.1800933.
We theoretically study kinetics of a polymer threading through a pore embedded in a flat membrane. We numerically solve three coupled kinetic equations for the number n(1) of polymer segments in one side of the membrane and expansion factors of the polymer chain in each side of the membrane. We find the time evolution n(1) proportional to t(1/(1+nu)) at late stages and the translocation time tau(t) is scaled as tau(t) proportional to 1+nu) for large number n of the polymer segments, where nu is the effective size exponent of the radius of gyration of the polymer. When the polymer is translocated into a region with a good solvent condition (nu=3/5), we obtain n(1) proportional to t(5/8) and tau(t) proportional to n(8/5).
我们从理论上研究了聚合物穿过嵌入在平膜中的孔的动力学。我们通过数值求解三个耦合的动力学方程,分别用于计算膜一侧聚合物链段的数量(n(1))以及膜两侧聚合物链的膨胀因子。我们发现,在后期阶段(n(1))与(t^{1/(1 + \nu)})成正比,对于大量聚合物链段(n),转运时间(\tau(t))的标度为(\tau(t))与(n^{1 + \nu})成正比,其中(\nu)是聚合物回转半径的有效尺寸指数。当聚合物转移到具有良溶剂条件((\nu = 3/5))的区域时,我们得到(n(1))与(t^{5/8})成正比,(\tau(t))与(n^{8/5})成正比。