Rountree Ryan B, Schoor Michael, Chen Hao, Marks Melissa E, Harley Vincent, Mishina Yuji, Kingsley David M
Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.
PLoS Biol. 2004 Nov;2(11):e355. doi: 10.1371/journal.pbio.0020355. Epub 2004 Oct 19.
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.
关节软骨对健康和活动能力起着至关重要的作用,但在数百万患有关节炎的人群中,它经常受损或缺失。人们对形成并维持覆盖关节区域骨骼表面的这层薄软骨的分子机制了解甚少,部分原因是一直没有可用于在该组织中特异性操纵基因表达的工具。在此,我们利用来自小鼠Gdf5基因(一种骨形态发生蛋白[BMP]家族成员)的调控信息,培育出了新的小鼠品系,可用于在发育中的关节中特异性激活或失活基因。从Gdf5细菌人工染色体克隆表达的Cre重组酶可导致在发育中的关节(包括早期关节中间带、成年关节软骨和关节囊)中对经loxP位点修饰的靶基因进行特异性激活或失活。我们已利用该系统来测试BMP受体信号在关节发育中的作用。已知在Bmpr1a中具有无效突变的小鼠会在胚胎发育早期因多种缺陷而死亡。然而,将一个经loxP位点修饰的Bmpr1a等位基因与Gdf5-Cre驱动子相结合可绕过这种胚胎致死性,并导致在关节区域缺失Bmpr1a基因的小鼠出生及出生后发育。在没有Bmpr1a受体功能的情况下,身体中的大多数关节通常能够正常形成。然而,出生后,受体缺陷小鼠关节内的关节软骨会在一个类似于人类骨关节炎的过程中逐渐磨损。Gdf5-Cre小鼠提供了一个可用于测试基因在关节区域中作用的通用系统。BMP受体信号不仅对于多种组织的早期发育和形成是必需的,而且对于出生后关节软骨的持续维持也是必需的。BMP受体信号强度的遗传变异可能是人类骨关节炎的一个重要风险因素,模拟或增强BMP受体信号的治疗方法应作为维持关节内衬健康的一种可能治疗策略进行研究。