Lövgren J Mattias, Bylund Göran O, Srivastava Manoj K, Lundberg L A Carina, Persson Olof P, Wingsle Gunnar, Wikström P Mikael
Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden.
RNA. 2004 Nov;10(11):1798-812. doi: 10.1261/rna.7720204.
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes. A DeltarimM mutant is defective in 30S maturation and accumulates 17S rRNA. To study the interaction of RimM with the 30S and its involvement in 30S maturation, RimM amino acid substitution mutants were constructed. A mutant RimM (RimM-YY-->AA), containing alanine substitutions for two adjacent tyrosines within the PRC beta-barrel domain, showed a reduced binding to 30S and an accumulation of 17S rRNA compared to wild-type RimM. The (RimM-YY-->AA) and DeltarimM mutants had significantly lower amounts of polysomes and also reduced levels of 30S relative to 50S compared to a wild-type strain. A mutation in rpsS, which encodes r-protein S19, suppressed the polysome- and 16S rRNA processing deficiencies of the RimM-YY-->AA but not that of the DeltarimM mutant. A mutation in rpsM, which encodes r-protein S13, suppressed the polysome deficiency of both rimM mutants. Suppressor mutations, found in either helices 31 or 33b of 16S rRNA, improved growth of both the RimM-YY-->AA and DeltarimM mutants. However, they suppressed the 16S rRNA processing deficiency of the RimM-YY-->AA mutant more efficiently than that of the DeltarimM mutant. Helices 31 and 33b are known to interact with S13 and S19, respectively, and S13 is known to interact with S19. A GST-RimM but not a GST-RimM(YY-->AA) protein bound strongly to S19 in 30S. Thus, RimM likely facilitates maturation of the region of the head of 30S that contains S13 and S19 as well as helices 31 and 33b.
大肠杆菌中的RimM蛋白与游离的30S核糖体亚基相关,但与70S核糖体无关。RimM缺失突变体在30S成熟过程中存在缺陷,并积累17S rRNA。为了研究RimM与30S的相互作用及其在30S成熟中的作用,构建了RimM氨基酸替代突变体。与野生型RimM相比,一种突变型RimM(RimM-YY→AA)在PRCβ桶状结构域内两个相邻酪氨酸被丙氨酸替代,显示出与30S的结合减少以及17S rRNA的积累。与野生型菌株相比,(RimM-YY→AA)和RimM缺失突变体的多核糖体数量显著减少,并且相对于50S,30S的水平也降低。编码核糖体蛋白S19的rpsS突变抑制了RimM-YY→AA的多核糖体和16S rRNA加工缺陷,但没有抑制RimM缺失突变体的缺陷。编码核糖体蛋白S13的rpsM突变抑制了两个RimM突变体的多核糖体缺陷。在16S rRNA的螺旋31或33b中发现的抑制突变改善了RimM-YY→AA和RimM缺失突变体的生长。然而,它们对RimM-YY→AA突变体的16S rRNA加工缺陷的抑制比对RimM缺失突变体更有效。已知螺旋31和33b分别与S13和S19相互作用,并且已知S13与S19相互作用。GST-RimM蛋白而非GST-RimM(YY→AA)蛋白与30S中的S19紧密结合。因此,RimM可能促进了30S头部包含S13和S19以及螺旋31和33b的区域的成熟。