Magin Thomas M, Reichelt Julia, Hatzfeld Mechthild
Institut für Physiologische Chemie, Abteilung für Zellbiochemie and LIMES, Universitätsklinikum Bonn, D-53115 Bonn, Germany.
Exp Cell Res. 2004 Nov 15;301(1):91-102. doi: 10.1016/j.yexcr.2004.08.018.
Intermediate filaments (IFs), desmosomes, and their associates are built from multidomain proteins that form cytoskeletal scaffolds in the cytoplasm and the nucleus of vertebrate tissues. Mutations in more than 80 genes cause monogenic disorders that include severe skin fragility, myopathies, neurodegeneration, and premature ageing, and contribute to polygenic disorders including liver and inflammatory bowel disease. First interpreted as "mechanical weakness" disorders resulting from a weakened cytoskeleton, emerging data support the concept that changes in cytoskeletal architecture profoundly alter signal transduction and cellular transcription patterns. This is in line with cell type-specific interactions between cytoskeletal and their associated proteins, and may involve both soluble and insoluble forms of intermediate filament proteins. Understanding how mutation-induced disruption of the cytoskeleton and its upstream regulators causes disease at the molecular level presents one of the major challenges in future research.
中间丝(IFs)、桥粒及其相关蛋白由多结构域蛋白构成,这些蛋白在脊椎动物组织的细胞质和细胞核中形成细胞骨架支架。80多个基因的突变会导致单基因疾病,包括严重的皮肤脆弱症、肌病、神经退行性变和早衰,并与多基因疾病有关,如肝脏疾病和炎症性肠病。最初被解释为由于细胞骨架减弱导致的“机械性无力”疾病,新出现的数据支持这样一种概念,即细胞骨架结构的变化会深刻改变信号转导和细胞转录模式。这与细胞骨架及其相关蛋白之间的细胞类型特异性相互作用一致,并且可能涉及中间丝蛋白的可溶性和不溶性形式。了解突变引起的细胞骨架及其上游调节因子的破坏如何在分子水平上导致疾病,是未来研究的主要挑战之一。