Suppr超能文献

聚类分析应用于通过激发-发射荧光光谱法对西班牙商业橄榄油进行探索性分析。

Cluster analysis applied to the exploratory analysis of commercial spanish olive oils by means of excitation-emission fluorescence spectroscopy.

作者信息

Guimet Francesca, Boqué Ricard, Ferré Joan

机构信息

Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Plaça Imperial Tàrraco 1, E-43005 Tarragona, Catalonia, Spain.

出版信息

J Agric Food Chem. 2004 Nov 3;52(22):6673-9. doi: 10.1021/jf040169m.

Abstract

Olive oil fluorescence is related to oil composition. Here it is shown that the natural clustering of different types of commercial Spanish olive oils depends on their fluorescence excitation-emission matrices (EEMs). Fifty-six commercial samples of olive oil (29 virgin olive oils, 20 pure olive oils, and 7 olive-pomace oils) were used. The clustering method was hierarchical agglomerative clustering using the Euclidean distance as a similarity measure and the average linkage. Two spectral ranges were considered (which either contained the fluorescence peak of the chlorophylls or did not), and various methods for preprocessing the fluorescence spectra were compared. The oils were clearly distinguished using the unfolded EEMs measured between lambda(ex) = 300-400 nm and lambda(em) = 400-600 nm. The optimal preprocessing was normalization of the unfolded spectra followed by column autoscaling. Also shown are the advantages of using second-order data (EEMs) instead of first-order data (a single fluorescence spectrum) for each sample.

摘要

橄榄油荧光与油的成分有关。本文表明,不同类型的西班牙商业橄榄油的自然聚类取决于它们的荧光激发 - 发射矩阵(EEMs)。使用了56个橄榄油商业样品(29个初榨橄榄油、20个纯橄榄油和7个橄榄果渣油)。聚类方法是层次凝聚聚类,使用欧几里得距离作为相似性度量并采用平均连锁法。考虑了两个光谱范围(一个包含叶绿素的荧光峰,另一个不包含),并比较了各种预处理荧光光谱的方法。使用在λ(ex)= 300 - 400 nm和λ(em)= 400 - 600 nm之间测量的展开EEMs可以清晰地区分这些油。最佳预处理是对展开光谱进行归一化,然后进行列自缩放。还展示了对每个样品使用二阶数据(EEMs)而非一阶数据(单个荧光光谱)的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验