Baldwin R Michael, Shultz Michael A, Buckpitt Alan R
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1311 Haring Hall, UC Davis, Davis, CA 95616, USA.
J Pharmacol Exp Ther. 2005 Feb;312(2):857-65. doi: 10.1124/jpet.104.075440. Epub 2004 Oct 27.
Naphthalene, a ubiquitous environmental contaminant, produces cytotoxicity in nonciliated bronchiolar epithelial (Clara) cells in mice; rats are refractory to lung cytotoxicity from naphthalene. In contrast, 1-nitronaphthalene is a potent toxicant in both species. Naphthalene is metabolized by CYP2F to a 1,2-epoxide, the first and obligate step in events leading to cytotoxicity. 1-Nitronaphthalene is metabolized to both the 5,6- and the 7,8-epoxides with the 7,8-epoxide predominating in lung. Previous studies have demonstrated recombinant CYP2F2 (mouse) to efficiently metabolize both naphthalene and 1-nitronaphthalene. To better understand the mechanism for the unique toxicity profiles for both compounds, a CYP2F ortholog (CYP2F4) was isolated from rat lung and expressed using a baculovirus system. Recombinant CYP2F4 efficiently generates 1R,2S-naphthalene oxide (K(m) = 3 microM, V(max) = 107 min(-1)) and the 5,6- and 7,8-epoxides of 1-nitronaphthalene (K(m) = 18 microM, V(max) = 25 min(-1) based on total generated glutathione conjugates). Kinetics and regio/stereoselectivity of rat CYP2F4 were indistinguishable from mouse CYP2F2. These results, combined with our recent immunomapping studies demonstrating minimal pulmonary CYP2F expression in rats, indicate that CYP2F expression is the factor most clearly associated with susceptibility to naphthalene-induced pneumotoxicity. CYP2F4 failed to display an enhanced ability to bioactivate 1-nitronaphthalene, an ability that could have potentially compensated for the lower CYP2F pulmonary expression levels in the rat, yet equal species susceptibilities. These results suggest the importance of other P450 enzymes in the epoxidation/bioactivation of 1-nitronaphthalene. Expression of recombinant CYP2F1 (human) yielded an immunoreactive protein with no detectable CO-difference spectrum suggesting inadequate heme incorporation.
萘是一种普遍存在的环境污染物,可在小鼠的无纤毛细支气管上皮(克拉拉)细胞中产生细胞毒性;大鼠对萘引起的肺细胞毒性具有抗性。相比之下,1-硝基萘在这两个物种中都是一种强效毒物。萘通过CYP2F代谢为1,2-环氧化物,这是导致细胞毒性的第一步且是必经步骤。1-硝基萘代谢为5,6-环氧化物和7,8-环氧化物,其中7,8-环氧化物在肺中占主导。先前的研究表明,重组CYP2F2(小鼠)能有效代谢萘和1-硝基萘。为了更好地理解这两种化合物独特毒性特征的机制,从大鼠肺中分离出CYP2F直系同源基因(CYP2F4),并使用杆状病毒系统进行表达。重组CYP2F4能高效生成1R,2S-萘氧化物(米氏常数K(m)=3微摩尔,最大反应速度V(max)=107分钟⁻¹)以及1-硝基萘的5,6-环氧化物和7,8-环氧化物(基于生成的总谷胱甘肽共轭物,米氏常数K(m)=18微摩尔,最大反应速度V(max)=25分钟⁻¹)。大鼠CYP2F4的动力学以及区域/立体选择性与小鼠CYP2F2无法区分。这些结果,结合我们最近的免疫定位研究表明大鼠肺中CYP2F表达极少,表明CYP2F表达是与萘诱导的肺毒性易感性最密切相关的因素。CYP2F4未能表现出增强的1-硝基萘生物活化能力,而这种能力可能会潜在地补偿大鼠肺中较低的CYP2F表达水平,但物种易感性相同。这些结果表明其他P450酶在1-硝基萘的环氧化/生物活化中具有重要性。重组CYP2F1(人类)的表达产生了一种免疫反应性蛋白,但未检测到一氧化碳差光谱,这表明血红素掺入不足。