Suppr超能文献

一种压电石英晶体生物传感器:利用大肠杆菌周质葡萄糖/半乳糖受体的两个单半胱氨酸突变体作为检测葡萄糖的靶蛋白。

A piezoelectric quartz crystal biosensor: the use of two single cysteine mutants of the periplasmic Escherichia coli glucose/galactose receptor as target proteins for the detection of glucose.

作者信息

Carmon Kendra S, Baltus Ruth E, Luck Linda A

机构信息

Department of Chemistry, Clarkson University, Potsdam, New York 13699, USA.

出版信息

Biochemistry. 2004 Nov 9;43(44):14249-56. doi: 10.1021/bi0484623.

Abstract

We have examined the potential utility of a glucose biosensor that employs the glucose/galactose receptor of Escherichia coli with a quartz crystal microbalance (QCM). Two different genetically engineered mutant proteins were utilized, each involving the incorporation of a single cysteine into the amino acid sequence of the protein. The proteins were immobilized on the surface of a piezoelectric crystal by a direct sulfur-gold linkage. Since the cysteines were located at different positions in the sequence, the receptors attach to the surface with different orientations. Considering only mass effects, the target sugars for this receptor are predicted to be too small to be detectable with a QCM. However, our sensors indicated measurable and reproducible frequency responses when immobilized receptor was exposed to sugar. This unexpectedly large frequency response occurs because the protein film is transformed from a viscous layer to a more rigid nondissipative film. The QCM can detect these changes because of the direct linkage of the proteins to the surface. Calculations of the frequency response expected for a viscoelastic film with different rheological characteristics support this hypothesis. This study is significant because it illustrates a widened applicability for the QCM methodology to protein systems that bind small molecules and undergo ligand-induced conformational changes.

摘要

我们研究了一种葡萄糖生物传感器的潜在效用,该传感器利用大肠杆菌的葡萄糖/半乳糖受体与石英晶体微天平(QCM)相结合。使用了两种不同的基因工程突变蛋白,每种蛋白都涉及在蛋白质的氨基酸序列中引入一个半胱氨酸。通过直接的硫-金连接将蛋白质固定在压电晶体表面。由于半胱氨酸位于序列中的不同位置,受体以不同的方向附着在表面。仅考虑质量效应,预计该受体的目标糖太小,无法用QCM检测到。然而,当固定化受体暴露于糖时,我们的传感器显示出可测量且可重复的频率响应。这种意外的大频率响应是因为蛋白质膜从粘性层转变为更刚性的非耗散膜。由于蛋白质与表面的直接连接,QCM可以检测到这些变化。对具有不同流变特性的粘弹性膜预期的频率响应的计算支持了这一假设。这项研究具有重要意义,因为它说明了QCM方法在结合小分子并经历配体诱导构象变化的蛋白质系统中的应用范围得到了拓宽。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验