Suppr超能文献

通过(C5Me5)3M反应的新模式合成的六电子还原剂[(C5Me5)2U]2(μ-η6:η6-C6H6)的结构、反应活性及密度泛函理论分析

Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(mu-eta6:eta6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity.

作者信息

Evans William J, Kozimor Stosh A, Ziller Joseph W, Kaltsoyannis Nikolas

机构信息

Department of Chemistry, University of California, Irvine, California 92697-2025, USA.

出版信息

J Am Chem Soc. 2004 Nov 10;126(44):14533-47. doi: 10.1021/ja0463886.

Abstract

The sterically crowded (C(5)Me(5))(3)U complex reacts with KC(8) or K/(18-crown-6) in benzene to form (C(5)Me(5))(2)U(mu-eta(6):eta(6)-C(6)H(6)), 1, and KC(5)Me(5). These reactions suggested that (C(5)Me(5))(3)U could be susceptible to (C(5)Me(5))(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C(5)Me(5))(3)U was treated with KN(SiMe(3))(2) to form (C(5)Me(5))(2)U[N(SiMe(3))(2)] and KC(5)Me(5). 1 has long U-C(C(5)Me(5)) bond distances comparable to (C(5)Me(5))(3)U, and it too is susceptible to (C(5)Me(5))(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe(3))(2) to make its amide-substituted analogue (Me(3)Si)(2)NU(mu-eta(6):eta(6)-C(6)H(6)), 2. Complexes 1 and 2 have nonplanar C(6)H(6)-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. (C(5)Me(5))(2)U(mu-eta(6):eta(6)-C(6)H(6)) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form (C(5)Me(5))(C(8)H(8))U(mu-eta(3):eta(3)-C(8)H(8)), (C(5)Me(5))(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C(5)Me(5))(1-) ligands, and two electrons from a bridging (C(6)H(6))(2-) moiety.

摘要

空间位阻较大的(C(5)Me(5))(3)U配合物在苯中与KC(8)或K/(18-冠-6)反应,生成(C(5)Me(5))(2)U(μ-η(6):η(6)-C(6)H(6)),即1,以及KC(5)Me(5)。这些反应表明,(C(5)Me(5))(3)U可能易于通过离子盐复分解反应被苯阴离子进行(C(5)Me(5))(1-)取代。为了在合成更常规产物时验证这一想法,将(C(5)Me(5))(3)U与KN(SiMe(3))(2)反应,生成(C(5)Me(5))(2)U[N(SiMe(3))(2)]和KC(5)Me(5)。1具有与(C(5)Me(5))(3)U相当的较长U-C(C(5)Me(5))键距,并且它也易于通过离子复分解反应进行(C(5)Me(5))(1-)取代:1与KN(SiMe(3))(2)反应生成其酰胺取代类似物(Me(3)Si)(2)NU(μ-η(6):η(6)-C(6)H(6)),即2。配合物1和2具有夹在两个铀离子之间的非平面C(6)H(6)衍生配体。通过反应性研究、电子吸收光谱和密度泛函理论计算对1和2进行了研究。(C(5)Me(5))(2)U(μ-η(6):η(6)-C(6)H(6))在与3当量环辛四烯反应形成(C(5)Me(5))(C(8)H(8))U(μ-η(3):η(3)-C(8)H(8))、(C(5)Me(5))(2)和苯的反应中充当六电子还原剂。这种多电子转化在形式上可归因于三个不同来源:来自两个U(III)中心的两个电子、来自两个(C(5)Me(5))(1-)配体的空间诱导还原的两个电子以及来自桥连(C(6)H(6))(2-)部分的两个电子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验