Danwanichakul Panu, Glandt Eduardo D
Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Klong-Luang, Pathumthani 12120, Thailand.
J Chem Phys. 2004 Nov 15;121(19):9684-92. doi: 10.1063/1.1806816.
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
我们将积分方程理论应用于连通性问题。最初应用于研究各种平衡系统中连续渗流的方法针对我们的序贯淬火模型进行了修改,序贯淬火模型是不可逆吸附的一种特殊极限情况。基于(淬火 - 退火)二元混合物近似的理论发展包括奥恩斯坦 - 泽尼克方程、珀库斯 - 耶维克封闭以及一个涉及三体连通性函数的附加项。通过引入类似柯克伍德的叠加近似简化了该函数。我们研究了随机放置球体的三维(3D)系统以及具有窄阱和宽阱的方形阱粒子的二维系统。我们的积分方程理论结果在一定密度范围内与模拟结果高度吻合。