Suppr超能文献

GPS:一种基于基团的新型磷酸化预测与评分方法。

GPS: a novel group-based phosphorylation predicting and scoring method.

作者信息

Zhou Feng-Feng, Xue Yu, Chen Guo-Liang, Yao Xuebiao

机构信息

Department of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, PR China.

出版信息

Biochem Biophys Res Commun. 2004 Dec 24;325(4):1443-8. doi: 10.1016/j.bbrc.2004.11.001.

Abstract

Protein phosphorylation is an important reversible post-translational modification of proteins, and it orchestrates a variety of cellular processes. Experimental identification of phosphorylation site is labor-intensive and often limited by the availability and optimization of enzymatic reaction. In silico prediction may facilitate the identification of potential phosphorylation sites with ease. Here we present a novel computational method named GPS: group-based phosphorylation site predicting and scoring platform. If two polypeptides differ by only two consecutive amino acids, in particular when the two different amino acids are a conserved pair, e.g., isoleucine (I) and valine (V), or serine (S) and threonine (T), we view these two polypeptides bearing similar 3D structures and biochemical properties. Based on this rationale, we formulated GPS that carries greater computational power with superior performance compared to two existing phosphorylation sites prediction systems, ScanSite 2.0 and PredPhospho. With database in public domain, GPS can predict substrate phosphorylation sites from 52 different protein kinase (PK) families while ScanSite 2.0 and PredPhospho offer at most 30 PK families. Using PKA as a model enzyme, we first compared prediction profiles from the GPS method with those from ScanSite 2.0 and PredPhospho. In addition, we chose an essential mitotic kinase Aurora-B as a model enzyme since ScanSite 2.0 and PredPhospho offer no prediction. However, GPS offers satisfactory sensitivity (94.44%) and specificity (97.14%). Finally, the accuracy of phosphorylation on MCAK predicted by GPS was validated by experimentation, in which six out of seven predicted potential phosphorylation sites on MCAK (Q91636) were experimentally verified. Taken together, we have generated a novel method to predict phosphorylation sites, which offers greater precision and computing power over ScanSite 2.0 and PredPhospho.

摘要

蛋白质磷酸化是一种重要的蛋白质可逆翻译后修饰,它调控着多种细胞过程。磷酸化位点的实验鉴定工作强度大,且常常受到酶促反应可用性和优化的限制。计算机预测可能有助于轻松识别潜在的磷酸化位点。在此,我们提出一种名为GPS的新型计算方法:基于分组的磷酸化位点预测与评分平台。如果两条多肽仅在两个连续氨基酸上不同,特别是当这两个不同氨基酸是保守对时,例如异亮氨酸(I)和缬氨酸(V),或丝氨酸(S)和苏氨酸(T),我们认为这两条多肽具有相似的三维结构和生化特性。基于这一原理,我们开发了GPS,与现有的两个磷酸化位点预测系统ScanSite 2.0和PredPhospho相比,它具有更强的计算能力和更优的性能。借助公共领域的数据库,GPS可以预测来自52个不同蛋白激酶(PK)家族的底物磷酸化位点,而ScanSite 2.0和PredPhospho最多只能提供30个PK家族的预测。以蛋白激酶A(PKA)作为模型酶,我们首先将GPS方法的预测结果与ScanSite 2.0和PredPhospho的预测结果进行了比较。此外,我们选择了一种重要的有丝分裂激酶Aurora - B作为模型酶,因为ScanSite 2.0和PredPhospho无法对其进行预测。然而,GPS具有令人满意的灵敏度(94.44%)和特异性(97.14%)。最后,通过实验验证了GPS预测的MCAK磷酸化的准确性,其中MCAK(Q91636)上预测的七个潜在磷酸化位点中有六个通过实验得到了验证。综上所述,我们生成了一种预测磷酸化位点的新方法,与ScanSite 2.0和PredPhospho相比,它具有更高的精度和计算能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验