Minami Kohtaro, Miki Takashi, Kadowaki Takashi, Seino Susumu
Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
Diabetes. 2004 Dec;53 Suppl 3:S176-80. doi: 10.2337/diabetes.53.suppl_3.s176.
ATP-sensitive K+ channels (KATP channels) are present in various tissues, including pancreatic beta-cells, heart, skeletal muscles, vascular smooth muscles, and brain. KATP channels are hetero-octameric proteins composed of inwardly rectifying K+ channel (Kir6.x) and sulfonylurea receptor (SUR) subunits. Different combinations of Kir6.x and SUR subunits comprise KATP channels with distinct electrophysiological and pharmacological properties. Recent studies of genetically engineered mice have provided insight into the physiological and pathophysiological roles of Kir6.x-containing KATP channels. Analysis of Kir6.2 null mice has shown that Kir6.2/SUR1 channels in pancreatic beta-cells and the hypothalamus are essential in glucose-induced insulin secretion and hypoglycemia-induced glucagon secretion, respectively, and that Kir6.2/SUR2 channels are involved in glucose uptake in skeletal muscles. Kir6.2-containing KATP channels in brain also are involved in protection from hypoxia-induced generalized seizure. In cardiovascular tissues, Kir6.1-containing KATP channels are involved in regulation of vascular tonus. In addition, the Kir6.1 null mouse is a model of Prinzmetal angina in humans. Our studies of Kir6.2 null and Kir6.1 null mice reveal that KATP channels are critical metabolic sensors in acute metabolic changes, including hyperglycemia, hypoglycemia, ischemia, and hypoxia.
ATP敏感性钾通道(KATP通道)存在于多种组织中,包括胰腺β细胞、心脏、骨骼肌、血管平滑肌和脑。KATP通道是由内向整流钾通道(Kir6.x)和磺脲类受体(SUR)亚基组成的异源八聚体蛋白。Kir6.x和SUR亚基的不同组合构成了具有不同电生理和药理特性的KATP通道。最近对基因工程小鼠的研究为含Kir6.x的KATP通道的生理和病理生理作用提供了深入了解。对Kir6.2基因敲除小鼠的分析表明,胰腺β细胞和下丘脑中的Kir6.2/SUR1通道分别在葡萄糖诱导的胰岛素分泌和低血糖诱导的胰高血糖素分泌中起关键作用,并且Kir6.2/SUR2通道参与骨骼肌中的葡萄糖摄取。脑中含Kir6.2的KATP通道也参与对缺氧诱导的全身性癫痫发作的保护。在心血管组织中,含Kir6.1的KATP通道参与血管张力的调节。此外,Kir6.1基因敲除小鼠是人类变异型心绞痛的一种模型。我们对Kir6.2基因敲除和Kir6.1基因敲除小鼠的研究表明,KATP通道是急性代谢变化(包括高血糖、低血糖、缺血和缺氧)中的关键代谢传感器。