Suppr超能文献

一种用于对蛋白质-配体结合亲和力进行排序并确定化合物混合物中变构与直接结合位点竞争的通用技术。

A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures.

作者信息

Annis D Allen, Nazef Naim, Chuang Cheng-Chi, Scott Margaret Porter, Nash Huw M

机构信息

NeoGenesis Pharmaceuticals Inc., 840 Memorial Drive, Cambridge, MA 02139, USA.

出版信息

J Am Chem Soc. 2004 Dec 1;126(47):15495-503. doi: 10.1021/ja048365x.

Abstract

To realize the full potential of combinatorial chemistry-based drug discovery, generic and efficient tools must be developed that apply the strengths of diversity-oriented chemical synthesis to the identification and optimization of lead compounds for disease-associated protein targets. We report an affinity selection-mass spectrometry (AS-MS) method for protein-ligand affinity ranking and the classification of ligands by binding site. The method incorporates the following steps: (1) an affinity selection stage, where protein-binding compounds are selected from pools of ligands in the presence of varying concentrations of a competitor ligand, (2) a first chromatography stage to separate unbound ligands from protein-ligand complexes, and (3) a second chromatography stage to dissociate the ligands from the complexes for identification and quantification by MS. The ability of the competitor ligand to displace a target-bound library member, as measured by MS, reveals the binding site classification and affinity ranking of the mixture components. The technique requires no radiolabel incorporation or direct biochemical assay, no modification or immobilization of the compounds or target protein, and all reaction components, including any buffers or cofactors required for protein stability, are free in solution. We demonstrate the method for several compounds of wide structural variety against representatives of the most important protein classes in contemporary drug discovery, including novel ATP-competitive and allosteric inhibitors of the Akt-1 (PKB) and Zap-70 kinases, and previously undisclosed antagonists of the M(2) muscarinic acetylcholine receptor, a G-protein coupled receptor (GPCR). The theoretical basis of the technique is analyzed mathematically, allowing quantitative estimation of binding affinities and, in the case of allosteric interaction, absolute determination of binding cooperativity. The method is readily applicable to high-throughput screening hit triage, combinatorial library-based affinity optimization, and developing structure-activity relationships among multiple ligands to a given receptor.

摘要

为了充分发挥基于组合化学的药物发现的潜力,必须开发通用且高效的工具,将多样化导向化学合成的优势应用于疾病相关蛋白质靶点先导化合物的识别和优化。我们报告了一种用于蛋白质 - 配体亲和力排序和按结合位点对配体进行分类的亲和选择质谱法(AS-MS)。该方法包括以下步骤:(1)亲和选择阶段,在存在不同浓度竞争配体的情况下,从配体库中选择与蛋白质结合的化合物;(2)第一阶段色谱法,用于将未结合的配体与蛋白质 - 配体复合物分离;(3)第二阶段色谱法,用于使配体从复合物中解离,以便通过质谱进行鉴定和定量。通过质谱测量竞争配体取代与靶点结合的文库成员的能力,可揭示混合物组分的结合位点分类和亲和力排序。该技术无需掺入放射性标记或直接进行生化测定,无需对化合物或靶蛋白进行修饰或固定,并且所有反应组分,包括蛋白质稳定性所需的任何缓冲液或辅因子,都在溶液中自由存在。我们针对当代药物发现中最重要的蛋白质类别代表,展示了该方法对几种结构广泛多样的化合物的适用性,包括Akt-1(PKB)和Zap-70激酶的新型ATP竞争性和变构抑制剂,以及M(2)毒蕈碱型乙酰胆碱受体(一种G蛋白偶联受体,GPCR)的先前未公开的拮抗剂。对该技术的理论基础进行了数学分析,从而能够定量估计结合亲和力,并且在变构相互作用的情况下,能够绝对确定结合协同性。该方法易于应用于高通量筛选命中物分类、基于组合文库的亲和力优化,以及建立多个配体与给定受体之间的构效关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验