Suppr超能文献

药代动力学和药效学数据在早期药物研发中药物安全性评估中的应用。

The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development.

作者信息

Walker D K

机构信息

Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, UK.

出版信息

Br J Clin Pharmacol. 2004 Dec;58(6):601-8. doi: 10.1111/j.1365-2125.2004.02194.x.

Abstract

The pharmaceutical industry continues to look for ways to reduce drug candidate attrition throughout the drug discovery and development process. A significant cause of attrition is due to safety issues arising either as a result of animal toxicity testing or in the clinical programme itself. A factor in the assessment of safety during early drug development is the pharmacokinetic profile of the compound. This allows safety data to be considered in the light of systemic drug exposure and therefore permits a quantitative assessment. This is particularly applicable when assessing the risk of a new chemical entity (NCE) in relation to safety parameters such as QT interval prolongation, where free plasma concentrations have been shown to be predictive of this property in relation to potency in preclinical testing. Prior to actual human exposure it is therefore important to be able to predict reliably the pharmacokinetic behaviour of an NCE in order to place such safety findings into a quantitative risk context. The emerging science of pharmacogenetics is likely to further our ability to assess the risk of NCEs to populations and individuals due to genetic variance. The drug metabolizing enzyme CYP2D6 has been recognized as providing the potential to result in widely differing systemic drug exposure in the patient population due to polymorphic expression. Further knowledge is likely to add to our understanding of population differences in exposure and response and aid in the identification of risk factors. One potential strategy for improving the effectiveness of the drug discovery process is to obtain clinical pharmacokinetic data more rapidly in order to assess more accurately the potential for both efficacy and safety of an NCE. Whilst procedures and technologies are available that allow this on the microdose scale, it is important that we recognize potential limitations of these approaches in order that they can be applied beneficially.

摘要

制药行业一直在寻找方法,以减少整个药物研发过程中候选药物的淘汰率。淘汰的一个重要原因是动物毒性试验或临床项目本身出现的安全问题。早期药物研发过程中安全性评估的一个因素是化合物的药代动力学特征。这使得安全数据能够根据药物的全身暴露情况来考虑,从而进行定量评估。这在评估新化学实体(NCE)与QT间期延长等安全参数相关的风险时尤为适用,在临床前试验中,游离血浆浓度已被证明可预测该特性与效力的关系。因此,在实际人体暴露之前,能够可靠地预测NCE的药代动力学行为,以便将此类安全发现置于定量风险背景下非常重要。新兴的药物遗传学科学可能会进一步提高我们评估由于基因变异导致NCE对人群和个体风险的能力。药物代谢酶CYP2D6已被认为由于多态性表达,有可能导致患者群体中全身药物暴露差异很大。更多的知识可能会加深我们对暴露和反应人群差异的理解,并有助于识别风险因素。提高药物研发过程有效性的一个潜在策略是更快地获得临床药代动力学数据,以便更准确地评估NCE的疗效和安全性潜力。虽然有程序和技术可以在微剂量规模上做到这一点,但重要的是我们要认识到这些方法的潜在局限性,以便能够有益地应用它们。

相似文献

1
The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development.
Br J Clin Pharmacol. 2004 Dec;58(6):601-8. doi: 10.1111/j.1365-2125.2004.02194.x.
4
A Historical View and Vision into the Future of the Field of Safety Pharmacology.
Handb Exp Pharmacol. 2015;229:3-45. doi: 10.1007/978-3-662-46943-9_1.
5
Exploratory drug safety: a discovery strategy to reduce attrition in development.
J Pharmacol Toxicol Methods. 2009 Jul-Aug;60(1):69-78. doi: 10.1016/j.vascn.2009.04.194. Epub 2009 May 5.
6
Safety pharmacology investigations in toxicology studies: an industry survey.
J Pharmacol Toxicol Methods. 2013 Jul-Aug;68(1):44-51. doi: 10.1016/j.vascn.2013.05.002. Epub 2013 May 14.
7
Translational PK/PD modeling for cardiovascular safety assessment of drug candidates: Methods and examples in drug development.
J Pharmacol Toxicol Methods. 2014 Jul-Aug;70(1):73-85. doi: 10.1016/j.vascn.2014.05.004. Epub 2014 May 28.
10
In silico toxicology for the pharmaceutical sciences.
Toxicol Appl Pharmacol. 2009 Dec 15;241(3):356-70. doi: 10.1016/j.taap.2009.08.022. Epub 2009 Aug 28.

引用本文的文献

1
In silico exploration of anticancer plant phytochemicals for EGFR-targeted lung cancer therapy.
Sci Rep. 2025 Jul 30;15(1):27809. doi: 10.1038/s41598-025-10412-4.
4
Machine Learning for Toxicity Prediction Using Chemical Structures: Pillars for Success in the Real World.
Chem Res Toxicol. 2025 May 19;38(5):759-807. doi: 10.1021/acs.chemrestox.5c00033. Epub 2025 May 2.
6
Apigenin as an emerging hepatoprotective agent: current status and future perspectives.
Front Pharmacol. 2024 Dec 19;15:1508060. doi: 10.3389/fphar.2024.1508060. eCollection 2024.
10
Real-Time Cellular Thermal Shift Assay to Monitor Target Engagement.
ACS Chem Biol. 2022 Sep 16;17(9):2471-2482. doi: 10.1021/acschembio.2c00334. Epub 2022 Sep 1.

本文引用的文献

1
Variability in drug response as a factor in drug design.
Curr Opin Drug Discov Devel. 1999 Jan;2(1):33-41.
2
Reaction phenotyping in drug discovery: moving forward with confidence?
Curr Drug Metab. 2003 Dec;4(6):527-34. doi: 10.2174/1389200033489235.
3
Drug metabolism and drug interactions: application and clinical value of in vitro models.
Curr Drug Metab. 2003 Oct;4(5):423-59. doi: 10.2174/1389200033489361.
4
Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects.
Eur J Clin Pharmacol. 2003 Nov;59(8-9):589-92. doi: 10.1007/s00228-003-0664-5. Epub 2003 Sep 19.
6
Clinical biomarkers in drug discovery and development.
Nat Rev Drug Discov. 2003 Jul;2(7):566-80. doi: 10.1038/nrd1130.
7
Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs.
Pharmacogenomics. 2003 Jul;4(4):397-410. doi: 10.1517/phgs.4.4.397.22747.
8
Rapid detection of the known SNPs of CYP2C9 using oligonucleotide microarray.
World J Gastroenterol. 2003 Jun;9(6):1342-6. doi: 10.3748/wjg.v9.i6.1342.
9
Genomics and the search for novel biomarkers in toxicology.
Biomarkers. 2003 Mar-Apr;8(2):79-92. doi: 10.1080/1354750031000070103.
10
Biomarkers in drug discovery and development: from target identification through drug marketing.
J Clin Pharmacol. 2003 Apr;43(4):329-41. doi: 10.1177/0091270003252480.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验