Gómez-Gardeñes J, Floría L M, Peyrard M, Bishop A R
Departamento de Teoría y Simulación de Sistemas Complejos, Instituto de Ciencia de Materiales de Aragón, C.S.I.C.-Universidad de Zaragoza, 50009 Zaragoza, Spain.
Chaos. 2004 Dec;14(4):1130-47. doi: 10.1063/1.1811991.
In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.
在对非线性薛定谔晶格中离散呼吸子的不可积平移运动进行的广泛数值研究中,我们使用了正则化牛顿算法,从可积阿布洛维茨 - 拉迪克晶格的极限开始延续这些解。这些解被证明是一个局域移动核心与一个激发扩展态(背景)的叠加,局域移动脉冲在空间上渐近于该背景。背景是小振幅非线性共振平面波的线性组合,它在控制局域核心平移运动的能量平衡中起着至关重要的作用。根据数值结果对微扰集体变量理论的预测进行了严格分析。