Martins L S F, Tavares F W, Peçanha R P, Castier M
Escola de Química, Universidade Federal do Rio de Janeiro-UFRJ, Caixa Postal 68542, 21949-900 Rio de Janeiro, RJ, Brazil.
J Colloid Interface Sci. 2005 Jan 15;281(2):360-7. doi: 10.1016/j.jcis.2004.08.106.
The centrifugation equilibrium problem is formulated and solved using a new procedure in which the specified variables are the temperature, system volume, particle dimensions and concentrations, angular speed, cell length, and cell distance from the rotation axis. As a result, we obtain the concentration profiles for all types of particles present in the system, which are considered to be immersed in a fluid. The particles are modeled as hard nonattractive spherocylinders using an equation of state, but the procedure is not restricted to any geometrical shape, and can be used with any equation of state available. The fluid is treated as a continuous medium, responsible for centrifugal buoyancy. We make calculations for colloidal suspensions of silica, often used for separations in biotechnology. Results are in good agreement with experiments and show excellent agreement in comparison with Monte Carlo simulations. Our calculations also predict focusing and shifting phenomena that have been experimentally observed in separations of fine particles.
利用一种新方法对离心平衡问题进行了公式化表述和求解,在该方法中,指定的变量包括温度、系统体积、颗粒尺寸和浓度、角速度、池长以及池到旋转轴的距离。结果,我们得到了系统中存在的所有类型颗粒的浓度分布,这些颗粒被视为浸没在流体中。使用状态方程将颗粒建模为硬的无吸引力的球柱体,但该方法不限于任何几何形状,并且可以与任何可用的状态方程一起使用。将流体视为负责离心浮力的连续介质。我们对常用于生物技术分离的二氧化硅胶体悬浮液进行了计算。结果与实验结果吻合良好,与蒙特卡罗模拟相比也显示出极佳的一致性。我们的计算还预测了在细颗粒分离中通过实验观察到的聚焦和位移现象。