Maestro Beatriz, Sanz Jesús M
Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. Universidad, s/n, E-03202 Elche, Alicante, Spain.
Biochem J. 2005 Apr 15;387(Pt 2):479-88. doi: 10.1042/BJ20041194.
Choline-binding modules are present in some virulence factors and many other proteins of Streptococcus pneumoniae (Pneumococcus). The most extensively studied choline-binding module is C-LytA, the C-terminal moiety of the pneumococcal cell-wall amidase LytA. The three-dimensional structure of C-LytA is built up from six loop-hairpin structures forming a left-handed beta-solenoid with four choline-binding sites. The affinity of C-LytA for choline and other structural analogues allows its use as an efficient fusion tag for single-step purification of hybrid proteins. In the present study, we characterize the folding and stability of C-LytA by chemical and thermal equilibrium denaturation experiments. Unfolding experiments using guanidinium chloride at pH 7.0 and 20 degrees C suggest the existence of two partly folded states (I1 and I2) in the following model: N (native)-->I1<=>I2. The N-->I1 transition is non-co-operative and irreversible, and is significant even in the absence of a denaturant. In contrast, the I1<=>I2 transition is co-operative and reversible, with an associated freeenergy change (DeltaG(0)) of 30.9+/-0.8 kJ x mol(-1). The residual structure in the I2 state is unusually stable even in 7.4 M guanidinium chloride. Binding of choline stabilizes the structure of the native state, induces its dimerization and prevents the accumulation of the I1 species ([N]2<=>[I2]2, DeltaG(0)=50.1+/-0.8 kJ x mol(-1)). Fluorescence and CD measurements, gel-filtration chromatography and limited proteolysis suggest that I1 differs from N in the local unfolding of the N-terminal beta-hairpins, and that I2 has a residual structure in the C-terminal region. Thermal denaturation of C-LytA suggests the accumulation of at least the I1 species. These results might pave the way for an effective improvement of its biotechnological applications by protein engineering.
胆碱结合模块存在于肺炎链球菌(肺炎球菌)的一些毒力因子和许多其他蛋白质中。研究最广泛的胆碱结合模块是C-LytA,它是肺炎球菌细胞壁酰胺酶LytA的C末端部分。C-LytA的三维结构由六个环发夹结构组成,形成一个具有四个胆碱结合位点的左手β-螺旋管。C-LytA对胆碱和其他结构类似物的亲和力使其能够用作杂交蛋白单步纯化的有效融合标签。在本研究中,我们通过化学和热平衡变性实验来表征C-LytA的折叠和稳定性。在pH 7.0和20℃下使用氯化胍进行的去折叠实验表明,在以下模型中存在两种部分折叠状态(I1和I2):N(天然态)→I1⇔I2。N→I1转变是非协同且不可逆的,即使在没有变性剂的情况下也很显著。相比之下,I1⇔I2转变是协同且可逆的,相关的自由能变化(ΔG(0))为30.9±0.8 kJ·mol⁻¹。即使在7.4 M氯化胍中,I2状态下的残余结构也异常稳定。胆碱的结合稳定了天然态的结构,诱导其二聚化并阻止I1物种的积累([N]2⇔[I2]2,ΔG(0)=50.1±0.8 kJ·mol⁻¹)。荧光和圆二色性测量、凝胶过滤色谱和有限蛋白酶解表明,I1在N末端β发夹的局部去折叠方面与N不同,并且I2在C末端区域具有残余结构。C-LytA的热变性表明至少积累了I1物种。这些结果可能为通过蛋白质工程有效改善其生物技术应用铺平道路。