Vittorelli Anne, Gauthier Catherine, Michoudet Christian, Martin Guy, Baverel Gabriel
Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U 499, Faculté de Médecine R.T.H. Laennec, 69372 Lyon Cedex 08, France.
Biochem J. 2005 May 1;387(Pt 3):825-34. doi: 10.1042/BJ20041309.
The metabolism of glutamine, a physiological substrate of the human kidney, plays a major role in systemic acid-base homoeostasis. Not only because of the limited availability of human renal tissue but also in part due to the lack of adequate cellular models, the mechanisms regulating the renal metabolism of this amino acid in humans have been poorly characterized. Therefore given the renewed interest in their use, human precision-cut renal cortical slices were incubated in Krebs-Henseleit medium (118 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO47H2O, 24.9 mM NaHCO3 and 2.5 mM CaCl22H2O) with 2 mM unlabelled or 13C-labelled glutamine residues. After incubation, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. Glutamate accumulation tended to plateau but glutamine removal and ammonia, alanine and lactate production as well as flux through GLDH (glutamate dehydrogenase) increased to various extents with time for up to 4 h of incubation indicating the metabolic viability of the slices. Valproate, a stimulator of renal glutamine metabolism, markedly and in a dose-dependent fashion increased ammonia production. With [3-13C]glutamine as a substrate, and in the absence and presence of valproate, [13C]glutamate, [13C]alanine and [13C]lactate accounted for 81 and 96%, 34 and 63%, 30 and 46% of the glutamate, alanine and lactate accumulations measured enzymatically respectively. The slices also metabolized glutamine and retained their reactivity to valproate during incubations lasting for up to 48 h. These results demonstrate that, although endogenous metabolism substantially operates in the presence of glutamine, human precision-cut renal cortical slices are metabolically viable and strongly respond to the ammoniagenic effect of valproate. Thus, this experimental model is suitable for metabolic and pharmaco-toxicological studies.
谷氨酰胺是人类肾脏的一种生理底物,其代谢在全身酸碱平衡中起主要作用。不仅因为人类肾脏组织的获取有限,还部分由于缺乏合适的细胞模型,人类肾脏中调节这种氨基酸代谢的机制一直未得到充分表征。因此,鉴于对其应用的重新关注,将人类精确切割的肾皮质切片在含有2 mM未标记或13C标记谷氨酰胺残基的Krebs-Henseleit培养基(118 mM NaCl、4.7 mM KCl、1.18 mM KH2PO4、1.18 mM MgSO4·7H2O、24.9 mM NaHCO3和2.5 mM CaCl2·2H2O)中孵育。孵育后,通过酶法和核磁共振光谱法测量底物利用和产物形成。谷氨酸积累趋于平稳,但谷氨酰胺消耗以及氨、丙氨酸和乳酸的产生以及通过谷氨酸脱氢酶(GLDH)的通量在长达4小时的孵育时间内随时间不同程度增加,表明切片的代谢活性。丙戊酸是肾脏谷氨酰胺代谢的刺激剂,以剂量依赖的方式显著增加氨的产生。以[3-13C]谷氨酰胺为底物,在不存在和存在丙戊酸的情况下,通过酶法测得的[13C]谷氨酸、[13C]丙氨酸和[13C]乳酸分别占谷氨酸、丙氨酸和乳酸积累量的81%和96%、34%和63%、30%和46%。在长达48小时的孵育过程中,切片也能代谢谷氨酰胺并保持对丙戊酸的反应性。这些结果表明,尽管在谷氨酰胺存在的情况下内源性代谢大量进行,但人类精确切割的肾皮质切片具有代谢活性,并对丙戊酸的产氨作用有强烈反应。因此,该实验模型适用于代谢和药物毒理学研究。