Suppr超能文献

关于表现的脆弱性:在解决数学问题时的压力下发挥失常。

More on the fragility of performance: choking under pressure in mathematical problem solving.

作者信息

Beilock Sian L, Kulp Catherine A, Holt Lauren E, Carr Thomas H

机构信息

Department of Psychology, Miami University, Oxford, OH 45056-1601, USA.

出版信息

J Exp Psychol Gen. 2004 Dec;133(4):584-600. doi: 10.1037/0096-3445.133.4.584.

Abstract

In 3 experiments, the authors examined mathematical problem solving performance under pressure. In Experiment 1, pressure harmed performance on only unpracticed problems with heavy working memory demands. In Experiment 2, such high-demand problems were practiced until their answers were directly retrieved from memory. This eliminated choking under pressure. Experiment 3 dissociated practice on particular problems from practice on the solution algorithm by imposing a high-pressure test on problems practiced 1, 2, or 50 times each. Infrequently practiced high-demand problems were still performed poorly under pressure, whereas problems practiced 50 times each were not. These findings support distraction theories of choking in math, which contrasts with considerable evidence for explicit monitoring theories of choking in sensorimotor skills. This contrast suggests a skill taxonomy based on real-time control structures.

摘要

在3项实验中,作者考察了压力下数学问题解决的表现。在实验1中,压力仅对工作记忆需求大且未经过练习的问题的表现产生损害。在实验2中,对这类高要求问题进行练习,直到能直接从记忆中提取答案。这消除了压力下的发挥失常。实验3通过对每种问题分别练习1次、2次或50次后进行高压测试,将特定问题的练习与解决算法的练习区分开来。练习次数少的高要求问题在压力下仍表现不佳,而每种问题都练习了50次的则不然。这些发现支持了数学领域中发挥失常的分心理论,这与感觉运动技能中发挥失常的明确监控理论的大量证据形成对比。这种对比暗示了一种基于实时控制结构的技能分类法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验